Abstract:
A regulator circuit comprising an input for receiving an input voltage; an output stage, configured to switch between said input voltage and a reference voltage to generate an output voltage, in dependence on a modulated signal; a controller, configured to receive an error signal (VERROR) on a control input and to provide the modulated signal to said output stage; an error amplifier, for providing the error signal to the controller in dependence on the output voltage; and presetting circuitry, configured to estimate the error signal in dependence on at least the input voltage, and for presetting the control input with the estimated error signal.
Abstract:
Methods and apparatus for control of DC-DC converters. The DC-DC converter is operable so that the low side supply switch may be inhibited from turning on in a cycle following the high side supply switch turning off. Turn on of the low side switch is inhibited if the time between turn off of the high side switch and the inductor (L) current reaching zero is less than a predetermined duration. Inhibiting the low side switch from turning on can prevent the inductor current from going negative, which would reduce the efficiency of the converter. When turn on of the low side switch is inhibited the inductor current flows through a parallel path, such as a parasitic body diode associated with the low side switch, which allows current flow in one direction only.
Abstract:
Methods and apparatus for control of DC-DC converters. The DC-DC converter is operable so that the low side supply switch may be inhibited from turning on in a cycle following the high side supply switch turning off. Turn on of the low side switch is inhibited if the time between turn off of the high side switch and the inductor (L) current reaching zero is less than a predetermined duration. Inhibiting the low side switch from turning on can prevent the inductor current from going negative, which would reduce the efficiency of the converter. When turn on of the low side switch is inhibited the inductor current flows through a parallel path, such as a parasitic body diode associated with the low side switch, which allows current flow in one direction only.
Abstract:
A regulator circuit comprising an input for receiving an input voltage; an output stage, configured to switch between said input voltage and a reference voltage to generate an output voltage, in dependence on a modulated signal; a controller, configured to receive an error signal (VERROR) on a control input and to provide the modulated signal to said output stage; an error amplifier, for providing the error signal to the controller in dependence on the output voltage; and presetting circuitry, configured to estimate the error signal in dependence on at least the input voltage, and for presetting the control input with the estimated error signal.
Abstract:
A level-shift circuit, comprising: an input, for receiving a first voltage; an output, for outputting a second voltage; a resistor array comprising one or more resistors connected in series to the input; a current sink for providing a current that is independent of the first voltage; a switch arrangement comprising a plurality of switch connections for establishing a selected one from a plurality of force paths between the current sink and the input, the selected force path comprising a selected number of the one or more resistors of said resistor array; and at least one connection between the output and the resistor array that provides a sense path between the resistor array and the output that does not comprise any of the switch connections used to establish each of the plurality of force paths.
Abstract:
A DC-to-DC converter generates multiple outputs from a single input supply using a single inductor. The inductor current can be changed rapidly by connecting the input voltage in either direction across the inductor using switches A to F. In use, current flows from the input supply through the inductor to an output during a charge phase, then current flows from ground through the inductor to the output in a discharge phase. The level of inductor current at the end of the discharge phase is stored. Before the next charge phase for the same output, the input supply is connected across the inductor in a slew phase to bring the inductor current to the stored level. This reduces crosstalk between outputs having different power requirements. Variable frequency noise in the converter is reduced by giving each output the same total time (slew phase+charge phase+discharge phase).
Abstract:
Methods and apparatus for control of DC-DC converters, especially in valley current mode. The DC-DC converter is operable so that a low side supply switch may be turned off, before the high side supply switch is turned on. During the period when both switches are off the current loop control remains active and the change in inductor (L) current is emulated. One embodiment uses a current sensor for lossless current sensing and emulates the change in inductor current by holding the value of the output of the current sensor (ISNS) at the time that the low side switch turns off and adding an emulated ramp signal (VISLP) until the inductor current reaches zero. Embodiment employing a pulse-skip mode of operation based on a minimum conduction time are also disclosed. The invention enables a seamless transition from Continuous Conduction Mode the Discontinuous Conduction Mode and Pulse Skipping and provide converters that are efficient at low current loads.
Abstract:
Methods and apparatus for control of DC-DC converters, especially in valley current mode. The DC-DC converter is operable so that a low side supply switch may be turned off, before the high side supply switch is turned on. During the period when both switches are off the current loop control remains active and the change in inductor (L) current is emulated. One embodiment uses a current sensor for lossless current sensing and emulates the change in inductor current by holding the value of the output of the current sensor (ISNS) at the time that the low side switch turns off and adding an emulated ramp signal (VISLP) until the inductor current reaches zero. Embodiment employing a pulse-skip mode of operation based on a minimum conduction time are also disclosed. The invention enables a seamless transition from Continuous Conduction Mode the Discontinuous Conduction Mode and Pulse Skipping and provide converters that are efficient at low current loads.
Abstract:
A level-shift circuit, comprising: an input, for receiving a first voltage; an output, for outputting a second voltage; a resistor array comprising one or more resistors connected in series to the input; a current sink for providing a current that is independent of the first voltage; a switch arrangement comprising a plurality of switch connections for establishing a selected one from a plurality of force paths between the current sink and the input, the selected force path comprising a selected number of the one or more resistors of said resistor array; and at least one connection between the output and the resistor array that provides a sense path between the resistor array and the output that does not comprise any of the switch connections used to establish each of the plurality of force paths.
Abstract:
A DC-to-DC converter for using a single input supply to generate a plurality of power outputs at different voltages (Vout1, Vout2) using a single inductor (33) has an arrangement of switches (A-F) enabling the input voltage (Vin) to be connected across the inductor (33) in both the forward and reverse directions. This allows the inductor current to be increased or reduced rapidly if desired, enabling the converter to supply a high current to an output even if its voltage is close to the input voltage (Vin). This circuit may be used with a control regime in which power is supplied to an output during an inductor charge phase in which current flows from the input supply through the inductor (33) to the power output, followed by an inductor discharge phase in which current flows from ground through the inductor (33) to the power output, the level of current in the inductor (33) at the end of the inductor discharge phase is stored, and, before the next inductor charge phase for the same output, a slew phase is provided in which the input supply is connected across the inductor in the forward or reverse direction, as appropriate, to bring the inductor current at the beginning of the inductor charge phase to be equal to the inductor current at the end of the previous inductor discharge phase for that power output. This arrangement helps to reduce crosstalk between power outputs, and to enable the converter to supply different outputs having substantially different power requirements.