摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined type and methods that can be invoked on instances of the type. The class is then registered with the database system, which enforces a specific contract for user-defined types against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined type in a database store. Second, the class must be capable of returning a null value for the user-defined type. Third, the class must provide a method for converting the user-defined type to another type. Once these requirements are satisfied, the database system enables instances of the user-defined type to be created. A user-defined type can be used in all contexts where any other built-in type can be used. This includes defining columns of tables, declaring variables and parameters to functions and stored procedures, and evaluating expressions of the user-defined type in SQL queries and updates. Preferably, the database system stores metadata about the user-defined type for subsequent use in creating instances of the type.
摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined aggregate and methods that can be invoked on instances of the user-defined aggregate. The class is then registered with the database system, which enforces a specific contract for user-defined aggregates against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined aggregate in a database store. Second, the class must comprise certain specified methods that can be invoked on an instance of the class. Once these requirements are satisfied, the database system enables instances of the user-defined aggregate to be created. Preferably, the database system stores metadata about the user-defined aggregate for subsequent use in creating instances of the aggregate.
摘要:
Several embodiments of the present invention are directed to systems and methods for extending the UDT framework of an extended relational data store (ERDS) to include support for unordered collections (multisets) and ordered collection (lists). More specifically, several embodiments of the present invention use an UDT infrastructure, CLR generics, and a new UNNEST operator to create and utilize a special type abstraction for collections that is simultaneously a scalar and a relation. As a scalar, this collection type can be processed by all parts of the data store engine that understand scalars (including but not limited to the client stack) and, as a relation, this collection type is queriable like any other type of relation.
摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined type and methods that can be invoked on instances of the type. The class is then registered with the database system, which enforces a specific contract for user-defined types against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined type in a database store. Second, the class must be capable of returning a null value for the user-defined type. Third, the class must provide a method for converting the user-defined type to another type. Once these requirements are satisfied, the database system enables instances of the user-defined type to be created. A user-defined type can be used in all contexts where any other built-in type can be used. This includes defining columns of tables, declaring variables and parameters to functions and stored procedures, and evaluating expressions of the user-defined type in SQL queries and updates. Preferably, the database system stores metadata about the user-defined type for subsequent use in creating instances of the type.
摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined type and methods that can be invoked on instances of the type. The class is then registered with the database system, which enforces a specific contract for user-defined types against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined type in a database store. Second, the class must be capable of returning a null value for the user-defined type. Third, the class must provide a method for converting the user-defined type to another type. Once these requirements are satisfied, the database system enables instances of the user-defined type to be created. A user-defined type can be used in all contexts where any other built-in type can be used. This includes defining columns of tables, declaring variables and parameters to functions and stored procedures, and evaluating expressions of the user-defined type in SQL queries and updates. Preferably, the database system stores metadata about the user-defined type for subsequent use in creating instances of the type.
摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined type and methods that can be invoked on instances of the type. The class is then registered with the database system, which enforces a specific contract for user-defined types against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined type in a database store. Second, the class must be capable of returning a null value for the user-defined type. Third, the class must provide a method for converting the user-defined type to another type. Once these requirements are satisfied, the database system enables instances of the user-defined type to be created. A user-defined type can be used in all contexts where any other built-in type can be used. This includes defining columns of tables, declaring variables and parameters to functions and stored procedures, and evaluating expressions of the user-defined type in SQL queries and updates. Preferably, the database system stores metadata about the user-defined type for subsequent use in creating instances of the type.
摘要:
Improved query optimizer using implied predicates. The system facilitates allowing a query optimizing component to introduce into a query, extra predicates that facilitate the following: render the same results as the original query; are used as dictated by rules passed to the optimizing component—these rules specify whether the new predicate is an equivalence (that will substitute the old predicate) or an implication (in which the old predicate is preserved); are considered as cost-based alternatives, and discarded if not useful; are tied to index utilization; and can consider both standard and multi-valued indices.
摘要:
A database system and method allows a user to write program code in a high-level programming language that implements a class that defines the structure of a user-defined type and methods that can be invoked on instances of the type. The class is then registered with the database system, which enforces a specific contract for user-defined types against the class. The contract comprises the following requirements. First, the class must specify one of a plurality of different formats for persisting instances of the user-defined type in a database store. Second, the class must be capable of returning a null value for the user-defined type. Third, the class must provide a method for converting the user-defined type to another type. Once these requirements are satisfied, the database system enables instances of the user-defined type to be created. A user-defined type can be used in all contexts where any other built-in type can be used. This includes defining columns of tables, declaring variables and parameters to functions and stored procedures, and evaluating expressions of the user-defined type in SQL queries and updates. Preferably, the database system stores metadata about the user-defined type for subsequent use in creating instances of the type.
摘要:
A technique for updating collection-valued and other complex structured columns in a nested table using a nested extension of an UPDATE statement that uses syntax and semantics to modify collection-valued columns in a way that is analogous to the syntax and semantics of the UPDATE statement that is used to modify scalar-valued columns of the table (called the outer UPDATE). Using the same syntactic and semantic constructs as the table at the outer level allows an existing implementation that processes modifications to relational tables to reuse its implementation techniques for processing outer updates to modify collection-valued columns as well. The UPDATE extensions enable the specification of updates to nested collections embedded at arbitrary levels of depth in the object model. The new syntax is embedded inside the outer UPDATE statement in a way that parallels the structure of the data itself and thus maps more directly to the user's conceptual model of the data. The method for implementing the UPDATE extensions uses a change descriptor, which is a data structure that aggregates substantially all changes, both scalar and collection-valued into a single value that can be applied to the changed collection-valued column. This technique can also be used for modifications to other kinds of complex-structured columns such as objects or xml. The change descriptor includes hierarchical information for the cell, thereby enabling efficient application of multiple updates at various granularity levels in a single operation and enabling the implementation of efficient index maintenance algorithms by updating only the indexes affected by the UPDATE operation and updating only those index rows that were affected by the UPDATE operation.
摘要:
Several embodiments of the present invention are directed to systems and methods for extending the UDT framework of an extended relational data store (ERDS) to include support for unordered collections (multisets) and ordered collection (lists). More specifically, several embodiments of the present invention use an UDT infrastructure, CLR generics, and a new UNNEST operator to create and utilize a special type abstraction for collections that is simultaneously a scalar and a relation. As a scalar, this collection type can be processed by all parts of the data store engine that understand scalars (including but not limited to the client stack) and, as a relation, this collection type is queriable like any other type of relation.