Abstract:
A folding cylinder includes a plurality of gripping devices supported on a first rotatable support with a first gripping device for holding a signature on the cylinder. A plurality of tucking devices are supported on a second rotatable support, the tucking devices including a first tucking device and a second tucking device. The first gripping device is located circumferentially between the first tucking device and second tucking device and a cover fixed to the second rotatable support extends circumferentially over the first gripping device between the first tucking device and the second tucking device. The cover has at least one aperture, with the first gripping device capable of extending through the at least one aperture. With the folding cylinder of the invention gaps between the tucking and gripping spiders can be eliminated.
Abstract:
The present invention is related to a device for seizing flat material (1). The device includes a transfer cylinder (6) rotating about an axis and having an outer surface (16). A cutting cylinder (3) cooperates with said transfer cylinder (6) and has at least one knife assembly (5) mounted thereon. A set of product seizing elements (7) is arranged in the outer periphery of said cutting cylinder (3), actuable about a common center point (11). Tips (25) of said product seizing elements (7) cooperate with counterparts (9) on the surface (16) of said transfer cylinder (6).
Abstract:
A ribbon transport apparatus for a printing press is provided. The ribbon transport apparatus includes a vacuum conveyor belt transporting a ribbon and a manifold supporting the vacuum conveyor belt. The vacuum conveyor belt and the manifold are arranged to draw the ribbon towards the vacuum conveyor belt via a suction. A method of transporting a ribbon in a printing press is also provided.
Abstract:
A folder includes a first cylinder having at least one first gripper for holding signatures and at least one tucker for tucking the signatures to define a first fold, a second cylinder having at least one first jaw for holding the signatures at the first fold, a first motor driving the at least one first gripper, and a second motor separate from the first motor, the second motor driving the at least one tucker of the first cylinder and the at least one first jaw of the second cylinder.
Abstract:
A folder includes a first cylinder having at least one first gripper for holding signatures and at least one tucker for tucking the signatures to define a first fold, a second cylinder having at least one first jaw for holding the signatures at the first fold, a first motor driving the at least one first gripper, and a second motor separate from the first motor, the second motor driving the at least one tucker of the first cylinder and the at least one first jaw of the second cylinder.
Abstract:
A variable format signature collection apparatus is provided. The variable format signature collection apparatus includes a sprocket and a timing belt traveling about the sprocket. The timing belt includes a plurality of gripper mounts. The gripper mounts include a first set of gripper mounts arranged on the timing belt to support grippers for receiving first signatures of a first cutoff length and a second set of gripper mounts positioned to support grippers for receiving second signatures of a second cutoff length.
Abstract:
A ribbon transport apparatus for a printing press is provided. The ribbon transport apparatus includes a vacuum conveyor belt transporting a ribbon and a manifold supporting the vacuum conveyor belt. The vacuum conveyor belt and the manifold are arranged to draw the ribbon towards the vacuum conveyor belt via a suction. A method of transporting a ribbon in a printing press is also provided.
Abstract:
A folding cylinder includes a plurality of gripping devices supported on a first rotatable support with a first gripping device for holding a signature on the cylinder. A plurality of tucking devices are supported on a second rotatable support, the tucking devices including a first tucking device and a second tucking device. The first gripping device is located circumferentially between the first tucking device and second tucking device and a cover fixed to the second rotatable support extends circumferentially over the first gripping device between the first tucking device and the second tucking device. The cover has at least one aperture, with the first gripping device capable of extending through the at least one aperture. With the folding cylinder of the invention gaps between the tucking and gripping spiders can be eliminated.
Abstract:
An apparatus and method for advancing and/or slowing signatures in a printing press. The apparatus and method includes a series of two or more belt drives, where each belt drive includes at least a pair of opposed belts. The belts are preferably timing or toothed belts driven by sprockets. The sprockets are formed with a semi-elliptical outer surface. As a result, the belts have two directions of motion. The first direction—horizontal—advances the signatures and may be used to slow the signatures. The second direction—vertical—withdraws the belts away from contact with the signatures to prevent buckling or wrinkling during a speed transition or during a transfer between belts. In one embodiment of the present invention, both opposed belts are retracting belts; in another embodiment, one belt is a fixed conveyor belt, while the other opposed belt is a retracting belt. The apparatus can be formed of a series of sequential belts running at different speeds, or a slower set of belts could be located inside the faster set of belts. In another embodiment, the upper and lower belts can be offset relative to one another to create an S-wrap along the signature, thereby compensating for different thicknesses of the folded signature.
Abstract:
A signature slow down device is provided which includes an entrance nip mechanism for receiving a signature from an upstream device at a first signature transport velocity and reducing the transport velocity of the signature to a first reduced transport velocity; and an exit nip mechanism for receiving the signature from the entrance nip mechanism, and further reducing the transport velocity of the signature to a second reduced transport velocity. In accordance with the present invention, the respective signature contacting surfaces of the entrance and exit nip mechanisms are each defined by a pair of opposing non-circular rotating components. Each non-circular rotating component has a first surface portion for forming a nip with its opposing non-circular rotating component and a second surface portion for forming a gap with its opposing non-circular rotating component. In each of the entrance and exit nip mechanisms, the opposing non-circular rotating components rotate at a variable velocity profile in which the non-circular rotating components decelerate when the nip is formed, and accelerate with the gap is formed.