Abstract:
A device for supplying energy to hydraulically or pneumatically actuated active implants. The device can take the form of pumping systems, metering systems, and/or occlusion systems. The device comprises a receiving coil for generating an electric voltage due to a changing magnetic flux that is generated by an extracorporeal transmitting coil. The receiving coil is designed such that said coil can be implanted into subcutaneous tissue. Furthermore, an electric line is provided for transmitting the electric current that is generated by the receiving coil from the receiving coil to the active implant. The device further comprises a compensation container for temporarily receiving a transmitter fluid, by means of which the active implant is activated. The compensating container is mounted on the receiving coil and/or on the electric line such that the compensating container together with the receiving coil and/or the electric line can be implanted into a common tissue or muscle pocket in the body of a patient.
Abstract:
The disclosure relates to an artificial heart implant comprising a blood pump with a pump drive, a controller for controlling and regulating the pump drive, and an electrode that is connected to the controller and is used for detecting electrical quantities on the patient's heart. The controller controls the pump drive in accordance with the signals detected by the electrode.
Abstract:
A transfer assembly comprising an intracorporeal transfer coil of an implant, and an extracorporeal transfer coil of an extracorporeal supply unit. The transfer coil of the implant has permanently associated therewith a transmitting element. The transfer coil of the supply unit has permanently associated therewith at least one receiving element. Further, the supply unit comprises an evaluation module connected with the receiving element and issuing a locating signal depending on an offset and/or a direction of offset of the transmitting element relative to the receiving element.
Abstract:
The disclosure relates to an artificial heart implant comprising a blood pump with a pump drive, a controller for controlling and regulating the pump drive, and an electrode that is connected to the controller and is used for detecting electrical quantities on the patient's heart. The controller controls the pump drive in accordance with the signals detected by the electrode.
Abstract:
A transfer assembly comprising an intracorporeal transfer coil of an implant, and an extracorporeal transfer coil of an extracorporeal supply unit. The transfer coil of the implant has permanently associated therewith a transmitting element. The transfer coil of the supply unit has permanently associated therewith at least one receiving element. Further, the supply unit comprises an evaluation module connected with the receiving element and issuing a locating signal depending on an offset and/or a direction of offset of the transmitting element relative to the receiving element.
Abstract:
A device for supplying energy to hydraulically or pneumatically actuated active implants. The device can take the form of pumping systems, metering systems, and/or occlusion systems. The device comprises a receiving coil for generating an electric voltage due to a changing magnetic flux that is generated by an extracorporeal transmitting coil. The receiving coil is designed such that said coil can be implanted into subcutaneous tissue. Furthermore, an electric line is provided for transmitting the electric current that is generated by the receiving coil from the receiving coil to the active implant. The device further comprises a compensation container for temporarily receiving a transmitter fluid, by means of which the active implant is activated. The compensating container is mounted on the receiving coil and/or on the electric line such that the compensating container together with the receiving coil and/or the electric line can be implanted into a common tissue or muscle pocket in the body of a patient.
Abstract:
A heart support device for pulsatile delivery of blood comprising a first and a second ventricle and a pump. Both ventricles comprises a fluid chamber and a blood-conveying chamber, wherein each fluid chamber can be filled with a fluid or emptied by way of the pump in such a way that an expansion or contraction of the fluid chamber occurs. In an expansion of the fluid chamber of a ventricle, a compression of the blood-conveying chamber of the same ventricle takes place, wherein a rigid pressure plate is disposed between a fluid chamber and the respective blood-conveying chamber, said pressure plate being able to move in the direction of the respective blood-conveying chamber.
Abstract:
A heart assistance device for the pulsatile delivery of blood is provided that includes a first pump chamber, a second pump chamber, and a pump. Both pump chambers each have a fluid chamber and a blood-carrying chamber. By means of the pump, each fluid chamber can be filled with a fluid or emptied thereof in such a way that an expansion or contraction of the fluid chamber takes place. During the expansion of the fluid chamber of one pump chamber, a compression of the blood-carrying chamber of the same blood chamber takes place. The pump is designed as a roller cell pump or vane pump.
Abstract:
A heart support device for pulsatile delivery of blood comprising a first and a second ventricle and a pump. Both ventricles comprises a fluid chamber and a blood-conveying chamber, wherein each fluid chamber can be filled with a fluid or emptied by way of the pump in such a way that an expansion or contraction of the fluid chamber occurs. In an expansion of the fluid chamber of a ventricle, a compression of the blood-conveying chamber of the same ventricle takes place, wherein a rigid pressure plate is disposed between a fluid chamber and the respective blood-conveying chamber, said pressure plate being able to move in the direction of the respective blood-conveying chamber.
Abstract:
A heart assistance device for the pulsatile delivery of blood. A first and a second pump chamber are provided, and also a pump. Both pump chambers each have a fluid chamber and a blood-carrying chamber. By means of the pump, each fluid chamber can be filled with a fluid or emptied thereof in such a way that an expansion or contraction of the fluid chamber takes place. During the expansion of the fluid chamber of one pump chamber, a compression of the blood-carrying chamber of the same blood chamber takes place.The pump is designed as a roller cell pump or vane pump.