摘要:
The present invention relates to an apparatus for measuring pressure inside a predetermined vessel based on the principle that the transmitting efficiency of ultrasonic waves is changed by acoustic impedance variation according to an internal pressure. The apparatus includes an ultrasound exciting unit 20 disposed inside the vessel 10 and generating predetermined ultrasonic waves, an ultrasound receiving unit 30 disposed inside the vessel 10 and placed on the same axis line as that of the ultrasound exciting unit 20, a control unit 70 for controlling a frequency and a waveform of the excitation signal transmitted into the ultrasound exciting unit 20, and a pressure measuring unit 80 for measuring an internal pressure of the vessel 10 based on an ultrasonic signal received by the ultrasound receiving unit 30 and the excitation signal transmitted into the ultrasound exciting unit 20.
摘要:
The present invention relates to an apparatus for measuring pressure inside a vessel using a magnetostrictive acoustic transducer. The apparatus includes a magnetostrictive acoustic transducer, including an exciting coil unit wound on a first magnetization yoke disposed on an outer position of a vessel, a receiving coil unit wound on the first magnetization yoke, and a vibration unit disposed on an inner position of the vessel in which the first magnetization yoke is installed; a control unit for supplying a predetermined excitation current signal to the exciting coil unit; and a pressure measuring unit for measuring an internal pressure of the vessel based on an ultrasonic wave signal received by the receiving coil unit and an excitation current signal into the exciting coil unit.
摘要:
The apparatus for measuring pressure inside a vessel using acoustic impedance matching layers may include an ultrasound exciting unit attached to the outer surface of the vessel wall that generates ultrasonic waves inside of the vessel. A first acoustic impedance matching layer attached to the inner surface of the vessel wall increases the transmitting efficiency of the ultrasonic waves. An ultrasound receiving unit attached to the outer surface of the vessel wall receives an ultrasonic signal traveling inside the vessel. A second acoustic impedance matching layer attached to the inner surface of the vessel wall increases the transmitting efficiency of the ultrasonic waves. A control unit connected to the ultrasound exciting unit controls the excitation signal transmitted into the ultrasound exciting unit. A pressure measuring unit connected to the control unit measures an internal pressure of the vessel based on the excitation signal and the received ultrasonic waves.
摘要:
The present invention relates to an apparatus for measuring pressure inside a vessel using a magnetostrictive acoustic transducer. The apparatus includes a magnetostrictive acoustic transducer, including an exciting coil unit wound on a first magnetization yoke disposed on an outer position of a vessel, a receiving coil unit wound on the first magnetization yoke, and a vibration unit disposed on an inner position of the vessel in which the first magnetization yoke is installed; a control unit for supplying a predetermined excitation current signal to the exciting coil unit; and a pressure measuring unit for measuring an internal pressure of the vessel based on an ultrasonic wave signal received by the receiving coil unit and an excitation current signal into the exciting coil unit.
摘要:
The present invention relates to an apparatus for measuring pressure inside a predetermined vessel based on the principle that the transmitting efficiency of ultrasonic waves is changed by acoustic impedance variation according to an internal pressure. The apparatus includes an ultrasound exciting unit 20 disposed inside the vessel 10 and generating predetermined ultrasonic waves, an ultrasound receiving unit 30 disposed inside the vessel 10 and placed on the same axis line as that of the ultrasound exciting unit 20, a control unit 70 for controlling a frequency and a waveform of the excitation signal transmitted into the ultrasound exciting unit 20, and a pressure measuring unit 80 for measuring an internal pressure of the vessel 10 based on an ultrasonic signal received by the ultrasound receiving unit 30 and the excitation signal transmitted into the ultrasound exciting unit 20.