摘要:
An incident predictor system is described herein for predicting impactful incidents in which server computer system operations fail or perform poorly. According to one embodiment of the invention, the incident prediction system trains a generalized linear model (GLM) to predict when a system health indicator will reach a level that represents an incident for the server system.
摘要:
A method is provided for detecting when users are being adversely impacted by poor system performance. A system health indicator is determined that is based on the amount of work that is blocked waiting for each of a set of an external events and combined with a heuristic that is based on the number of users waiting for the work to complete. The system health indicator is compared to a threshold such that an alert is generated when the system health indicator crosses the threshold. However, the system health indicator is designed so that an alert is only generated when a significant user base is or will in the near future experience a problem with the system. Furthermore, the system health indicator is designed to vary smoothly to maintain its suitability for the application of predictive technology.
摘要:
A method is provided for detecting when users are being adversely impacted by poor system performance. A system health indicator is determined that is based on the amount of work that is blocked waiting for each of a set of an external events and combined with a heuristic that is based on the number of users waiting for the work to complete. The system health indicator is compared to a threshold such that an alert is generated when the system health indicator crosses the threshold. However, the system health indicator is designed so that an alert is only generated when a significant user base is or will in the near future experience a problem with the system. Furthermore, the system health indicator is designed to vary smoothly to maintain its suitability for the application of predictive technology.
摘要:
An incident predictor system is described herein for predicting impactful incidents in which server computer system operations fail or perform poorly. According to one embodiment of the invention, the incident prediction system trains a generalized linear model (GLM) to predict when a system health indicator will reach a level that represents an incident for the server system.
摘要:
An implementation of NMF functionality integrated into a relational database management system provides the capability to apply NMF to relational datasets and to sparse datasets. A database management system comprises a multi-dimensional data table operable to store data and a processing unit operable to perform non-negative matrix factorization on data stored in the multi-dimensional data table and to generate a plurality of data tables, each data table being smaller than the multi-dimensional data table and having reduced dimensionality relative to the multi-dimensional data table. The multi-dimensional data table may be a relational data table.
摘要:
An implementation of SVM functionality integrated into a relational database management system (RDBMS) improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A database management system comprises data stored in the database management system and a processing unit comprising a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the database management system, and an apply unit operable to apply the support vector machine model using the data stored in the database management system. The database management system may be a relational database management system.
摘要:
A method for projection mining comprises performing a first projection on a first data object of a first type comprising a plurality of data entries and a second data object of a second type comprising a plurality of data entries to create definitions of attributes of the first data object and definitions of attributes of the second data object, performing a second projection of the definitions of the attributes of the first data object and the definitions of the attributes of the second data object into a space of meta-attributes based on semantic relationships among the attributes of the first data object and the second data object, learning relationships between the space of meta-attributes formed by the projections of the first data object and the second data object and a space of meta-attributes relating to new data not included in the first data object and the second data object, and generating at least one new data object of the first or second type based on the new data using the learned relationships.
摘要:
A system and computer program product provides data mining model deployment (scoring) functionality as a family of SQL functions (operators). A database management system comprises a processor operable to execute computer program instructions, a memory operable to store computer program instructions executable by the processor, and computer program instructions stored in the memory and executable to implement a plurality of database query language statements, each statement operable to cause a data mining function to be performed.
摘要:
A data-centric data mining technique provides greater ease of use and flexibility, yet provides high quality data mining results by providing general methodologies for automatic data mining. A methodology for each major type of mining function is provided, including: supervised modeling (classification and regression), feature selection, and ranking, clustering, outlier detection, projection of the data to lower dimensionality, association discovery, and data source comparison. A method for data-centric data mining comprises invoking a data mining feature to perform data mining on a data source, performing data mining on data from the data source using the data mining feature, wherein the data mining feature uses data mining processes and objects internal to the data mining feature and does not use data mining processes and objects external to the data mining feature, outputting data mining results from the data mining feature, and removing all data mining processes and objects internal to the data mining feature that were used to process the data from the data source.
摘要:
An implementation of SVM functionality improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A system for support vector machine processing comprises data stored in the system, a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the system, based on a plurality of model-building parameters, a parameter estimation unit operable to estimate values for at least some of the model-building parameters, and an apply unit operable to apply the support vector machine model using the data stored in the system.