Support vector machines in a relational database management system
    2.
    发明申请
    Support vector machines in a relational database management system 有权
    在关系数据库管理系统中支持向量机

    公开(公告)号:US20050050087A1

    公开(公告)日:2005-03-03

    申请号:US10927024

    申请日:2004-08-27

    IPC分类号: G06F17/00 G06F17/30

    摘要: An implementation of SVM functionality integrated into a relational database management system (RDBMS) improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A database management system comprises data stored in the database management system and a processing unit comprising a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the database management system, and an apply unit operable to apply the support vector machine model using the data stored in the database management system. The database management system may be a relational database management system.

    摘要翻译: 集成到关系数据库管理系统(RDBMS)中的SVM功能的实现提高了效率,时间消耗和数据安全性,减少了对经验不足的用户提出的参数调优挑战,并降低了构建SVM模型的计算成本。 数据库管理系统包括存储在数据库管理系统中的数据和处理单元,该处理单元包括可操作以向客户端软件提供接口的客户端应用编程接口,可操作以在数据的至少一部分上构建支持向量机模型的构建单元 存储在数据库管理系统中的应用单元,以及可以使用存储在数据库管理系统中的数据应用支持向量机模型的应用单元。 数据库管理系统可以是关系数据库管理系统。

    Support vector machines processing system
    3.
    发明申请
    Support vector machines processing system 有权
    支持向量机处理系统

    公开(公告)号:US20050049990A1

    公开(公告)日:2005-03-03

    申请号:US10927111

    申请日:2004-08-27

    摘要: An implementation of SVM functionality improves efficiency, time consumption, and data security, reduces the parameter tuning challenges presented to the inexperienced user, and reduces the computational costs of building SVM models. A system for support vector machine processing comprises data stored in the system, a client application programming interface operable to provide an interface to client software, a build unit operable to build a support vector machine model on at least a portion of the data stored in the system, based on a plurality of model-building parameters, a parameter estimation unit operable to estimate values for at least some of the model-building parameters, and an apply unit operable to apply the support vector machine model using the data stored in the system.

    摘要翻译: SVM功能的实现提高了效率,时间消耗和数据安全性,减少了对经验不足的用户提出的参数调优挑战,并降低了构建SVM模型的计算成本。 用于支持向量机处理的系统包括存储在系统中的数据,可操作以向客户端软件提供接口的客户端应用程序编程接口,可构建单元,用于在存储在所述系统中的数据的至少一部分上构建支持向量机模型 系统,基于多个模型构建参数,参数估计单元,其可操作以估计至少一些模型建立参数的值;以及应用单元,可操作以使用存储在系统中的数据应用支持向量机模型 。

    Predictive data mining SQL functions (operators)
    4.
    发明申请
    Predictive data mining SQL functions (operators) 审中-公开
    预测数据挖掘SQL函数(运算符)

    公开(公告)号:US20060218132A1

    公开(公告)日:2006-09-28

    申请号:US11088858

    申请日:2005-03-25

    IPC分类号: G06F17/30

    CPC分类号: G06F16/24553 G06F2216/03

    摘要: A system and computer program product provides data mining model deployment (scoring) functionality as a family of SQL functions (operators). A database management system comprises a processor operable to execute computer program instructions, a memory operable to store computer program instructions executable by the processor, and computer program instructions stored in the memory and executable to implement a plurality of database query language statements, each statement operable to cause a data mining function to be performed.

    摘要翻译: 系统和计算机程序产品提供数据挖掘模型部署(评分)功能作为一系列SQL函数(运算符)。 数据库管理系统包括可操作以执行计算机程序指令的处理器,可操作以存储可由所述处理器执行的计算机程序指令的存储器以及存储在所述存储器中并可执行以执行多个数据库查询语言语句的计算机程序指令的存储器, 以进行数据挖掘功能。

    Data-centric automatic data mining

    公开(公告)号:US20060136462A1

    公开(公告)日:2006-06-22

    申请号:US11012350

    申请日:2004-12-16

    IPC分类号: G06F17/00

    摘要: A data-centric data mining technique provides greater ease of use and flexibility, yet provides high quality data mining results by providing general methodologies for automatic data mining. A methodology for each major type of mining function is provided, including: supervised modeling (classification and regression), feature selection, and ranking, clustering, outlier detection, projection of the data to lower dimensionality, association discovery, and data source comparison. A method for data-centric data mining comprises invoking a data mining feature to perform data mining on a data source, performing data mining on data from the data source using the data mining feature, wherein the data mining feature uses data mining processes and objects internal to the data mining feature and does not use data mining processes and objects external to the data mining feature, outputting data mining results from the data mining feature, and removing all data mining processes and objects internal to the data mining feature that were used to process the data from the data source.

    Progress notification supporting data mining
    6.
    发明授权
    Progress notification supporting data mining 有权
    进度通知支持数据挖掘

    公开(公告)号:US07031978B1

    公开(公告)日:2006-04-18

    申请号:US10146821

    申请日:2002-05-17

    IPC分类号: G06F17/30

    摘要: The present invention relates to progress notification systems, computer program products and methods of operation thereof, that reports processing progress of data mining operations at regular periodic intervals. The system comprises: an input/output interface for exchanging information with a network; a memory for storing updated progress objects associated with the data mining operation as a set of data mining algorithms progress in processing; and a processor coupled to the input/output interface and the memory, the processor for performing the data mining operation, the data mining operation implementing the set of data mining algorithms; and generating a notification object for the data mining operation at a pre-determined interval, the notification object based on the progress objects at each of the pre-determined intervals.

    摘要翻译: 本发明涉及进度通知系统,计算机程序产品及其操作方法,其以定期周期的间隔报告数据挖掘操​​作的进程。 该系统包括:用于与网络交换信息的输入/输出接口; 用于存储与数据挖掘操​​作相关联的更新的进度对象作为一组数据挖掘算法在进程中进行的存储器; 以及耦合到输入/输出接口和存储器的处理器,用于执行数据挖掘操​​作的处理器,实现数据挖掘算法集合的数据挖掘操​​作; 以及以预定间隔生成用于所述数据挖掘操​​作的通知对象,所述通知对象基于每个预定间隔处的进度对象。

    Enterprise web mining system and method

    公开(公告)号:US07117208B2

    公开(公告)日:2006-10-03

    申请号:US11013339

    申请日:2004-12-17

    IPC分类号: G06F17/30

    摘要: An enterprise-wide web data mining system, computer program product, and method of operation thereof, that uses Internet based data sources, and which operates in an automated and cost effective manner. The enterprise web mining system comprises: a database coupled to a plurality of data sources, the database operable to store data collected from the data sources; a data mining engine coupled to the web server and the database, the data mining engine operable to generate a plurality of data mining models using the collected data; a server coupled to a network, the server operable to: receive a request for a prediction or recommendation over the network, generate a prediction or recommendation using the data mining models, and transmit the generated prediction or recommendation.

    Enterprise web mining system and method
    8.
    发明申请
    Enterprise web mining system and method 有权
    企业网络挖掘系统和方法

    公开(公告)号:US20050102292A1

    公开(公告)日:2005-05-12

    申请号:US11013339

    申请日:2004-12-17

    IPC分类号: G06F17/30

    摘要: An enterprise-wide web data mining system, computer program product, and method of operation thereof, that uses Internet based data sources, and which operates in an automated and cost effective manner. The enterprise web mining system comprises: a database coupled to a plurality of data sources, the database operable to store data collected from the data sources; a data mining engine coupled to the web server and the database, the data mining engine operable to generate a plurality of data mining models using the collected data; a server coupled to a network, the server operable to: receive a request for a prediction or recommendation over the network, generate a prediction or recommendation using the data mining models, and transmit the generated prediction or recommendation.

    摘要翻译: 企业范围的网络数据挖掘系统,计算机程序产品及其操作方法,其使用基于因特网的数据源,并以自动化和成本有效的方式运行。 所述企业网络挖掘系统包括:耦合到多个数据源的数据库,所述数据库可操作以存储从所述数据源收集的数据; 数据挖掘引擎,其耦合到所述web服务器和所述数据库,所述数据挖掘引擎可操作以使用所收集的数据生成多个数据挖掘模型; 耦合到网络的服务器,所述服务器可操作用于:通过所述网络接收对预测或推荐的请求,使用所述数据挖掘模型生成预测或推荐,并传送所生成的预测或推荐。

    Enterprise web mining system and method
    9.
    发明授权
    Enterprise web mining system and method 有权
    企业网络挖掘系统和方法

    公开(公告)号:US06836773B2

    公开(公告)日:2004-12-28

    申请号:US09963401

    申请日:2001-09-27

    IPC分类号: G06F1730

    摘要: An enterprise-wide web data mining system, computer program product, and method of operation thereof, that uses Internet based data sources, and which operates in an automated and cost effective manner. The enterprise web mining system comprises: a database coupled to a plurality of data sources, the database operable to store data collected from the data sources; a data mining engine coupled to the web server and the database, the data mining engine operable to generate a plurality of data mining models using the collected data; a server coupled to a network, the server operable to: receive a request for a prediction or recommendation over the network, generate a prediction or recommendation using the data mining models, and transmit the generated prediction or recommendation.

    摘要翻译: 企业范围的网络数据挖掘系统,计算机程序产品及其操作方法,其使用基于因特网的数据源,并以自动化和成本有效的方式运行。 所述企业网络挖掘系统包括:耦合到多个数据源的数据库,所述数据库可操作以存储从所述数据源收集的数据; 数据挖掘引擎,其耦合到所述web服务器和所述数据库,所述数据挖掘引擎可操作以使用所收集的数据生成多个数据挖掘模型; 耦合到网络的服务器,所述服务器可操作用于:通过所述网络接收对预测或推荐的请求,使用所述数据挖掘模型生成预测或推荐,并传送所生成的预测或推荐。

    Fast vector quantization with topology learning
    10.
    发明申请
    Fast vector quantization with topology learning 有权
    快速矢量量化与拓扑学习

    公开(公告)号:US20070064627A1

    公开(公告)日:2007-03-22

    申请号:US11519781

    申请日:2006-09-13

    申请人: Marcos Campos

    发明人: Marcos Campos

    IPC分类号: H04L12/28 H04L12/56

    CPC分类号: G06K9/6251 G06K9/6224

    摘要: A new process called a vector approximation graph (VA-graph) leverages a tree based vector quantizer to quickly learn the topological structure of the data. It then uses the learned topology to enhance the performance of the vector quantizer. A method for analyzing data comprises receiving data, partitioning the data and generating a tree based on the partitions, learning a topology of a distribution of the data, and finding a best matching unit in the data using the learned topology.

    摘要翻译: 称为矢量近似图(VA-graph)的新过程利用基于树的矢量量化器来快速了解数据的拓扑结构。 然后使用学习的拓扑来增强矢量量化器的性能。 一种用于分析数据的方法包括:接收数据,划分数据并基于分区生成树,学习数据分布的拓扑,以及使用学习的拓扑结构在数据中找到最佳匹配单元。