Abstract:
Method for correcting the magnetic field gradient waveform in a magnetic resonance measurement including extracting an impulse response from the measured step response of a magnetic resonance system, determining the slew rate of the system during the step response measurement, modifying the desired output waveform such that the desired output waveform is constrained to within the slew rate and the bandwidth of the system, and determining the required pre-equalized input waveform.
Abstract:
A method based on pure phase encode FIDs that permits high strength gradient measurement is disclosed. A small doped water phantom (1˜3 mm droplet, T1, T2, T2*
Abstract:
A unilateral NMR sensor comprising a ferromagnetic yoke; a permanent magnet arranged on the yoke; a pole piece on the magnet; the pole piece including an air-pole piece interface surface whose shape corresponds to an equipotential contour of magnetic scalar potential
Abstract:
A method of measuring a parameter in a sample by imaging at least a portion of the sample using a spin-echo single-point imaging (SE-SPI) pulse sequence. This method involves applying a pure phase encoding to the SE-SPI pulse sequence, acquiring a multiplicity of echoes, and determining the spatially resolved T2 distribution. In another embodiment, individual echoes are separately phase encoded in a multi-echo acquisition and the SE-SPI pulse sequence is a hybrid SE-SPI sequence. In another embodiment, an external force can be used to build up a distribution of saturations in the sample, and a T2 distribution can be measured for the sample, which is then used to determine a parameter of the sample. A spatially resolved T2 distribution can also be measured and a resulting spatially resolved T2 distribution used to determine the T2 distribution as a function of capillary pressure.
Abstract:
An apparatus and method for performing nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) on samples in metallic holders and vessels or in proximity to metallic objects is disclosed.
Abstract:
A method of measuring a parameter in a sample by imaging at least a portion of the sample using a spin-echo single-point imaging (SE-SPI) pulse sequence. This method involves applying a pure phase encoding to the SE-SPI pulse sequence, acquiring a multiplicity of echoes, and determining the spatially resolved T2 distribution. In another embodiment, individual echoes are separately phase encoded in a multi-echo acquisition and the SE-SPI pulse sequence is a hybrid SE-SPI sequence. In another embodiment, an external force can be used to build up a distribution of saturations in the sample, and a T2 distribution can be measured for the sample, which is then used to determine a parameter of the sample. A spatially resolved T2 distribution can also be measured and a resulting spatially resolved T2 distribution used to determine the T2 distribution as a function of capillary pressure.
Abstract:
An apparatus and method for performing nuclear magnetic resonance (NMR) or magnetic resonance imaging (MRI) on samples in metallic holders and vessels or in proximity to metallic objects is disclosed.
Abstract:
A method and apparatus are provided for measuring a parameter such as capillary pressure in porous media such as rock samples. The method comprises mounting a sample in a centrifuge such that different portions of the sample are spaced at different distances from the centrifuge axis, rotating the sample about the axis, measuring a first parameter in the different portions of the sample, and determining the value of a second parameter related to the force to which each portion is subjected due to rotation of the sample. In one embodiment, the first parameter is relative saturation of the sample as measured by MRI techniques, and the second parameter is capillary pressure.