Training a support vector machine with process constraints
    1.
    发明申请
    Training a support vector machine with process constraints 有权
    训练具有过程限制的支持向量机

    公开(公告)号:US20070282766A1

    公开(公告)日:2007-12-06

    申请号:US11418971

    申请日:2006-05-05

    IPC分类号: G06N3/02

    摘要: System and method for training a support vector machine (SVM) with process constraints. A model (primal or dual formulation) implemented with an SVM and representing a plant or process with one or more known attributes is provided. One or more process constraints that correspond to the one or more known attributes are specified, and the model trained subject to the one or more process constraints. The model includes one or more inputs and one or more outputs, as well as one or more gains, each a respective partial derivative of an output with respect to a respective input. The process constraints may include any of: one or more gain constraints, each corresponding to a respective gain; one or more Nth order gain constraints; one or more input constraints; and/or one or more output constraints. The trained model may then be used to control or manage the plant or process.

    摘要翻译: 用于训练具有过程约束的支持向量机(SVM)的系统和方法。 提供了使用SVM实现并且表示具有一个或多个已知属性的工厂或过程的模型(原始或双重配方)。 指定对应于一个或多个已知属性的一个或多个过程约束,并且该模型受制于一个或多个过程约束。 该模型包括一个或多个输入和一个或多个输出,以及一个或多个增益,每个增益相对于相应输入的输出的相应偏导数。 过程约束可以包括以下任何一个:一个或多个增益约束,每个对应于相应的增益; 一个或多个第N阶增益约束; 一个或多个输入约束; 和/或一个或多个输出约束。 然后可以使用经过训练的模型来控制或管理植物或过程。