摘要:
A catheter assembly is disclosed comprising a catheter, a tubular structure affixed to an exterior surface of the catheter, and a stabilizing cuff affixed to, and at least partially embedded within, the tubular structure. The tubular structure may include a tapered surface extending from an end of the tubular structure to an exterior surface of the catheter. A method of manufacturing a catheter assembly is also disclosed. For example, such a method may comprise positioning a tubular structure about a catheter, positioning a stabilizing cuff near the tubular structure, and partially embedding at least a portion of the stabilizing cuff within the tubular structure while shaping the tubular structure to form a tapered surface. A temporary sleeve may be positioned about the tubular structure prior to shaping the tubular structure. The tubular may also be performed to include a tapered end prior to positioning the tubular structure about the catheter.
摘要:
An access port for subcutaneous implantation is disclosed. Such an access port may comprise a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. Further, the access port may include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. Further, the subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is engraved or otherwise defined by the access port, so as to be visible after implantation via x-ray imaging technology.
摘要:
An access port for subcutaneous implantation is disclosed. Such an access port may comprise a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. Further, the access port may include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. Further, the subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is engraved or otherwise defined by the access port, so as to be visible after implantation via x-ray imaging technology.
摘要:
A catheter assembly includes a catheter, a tubular structure affixed to an exterior surface of the catheter, and a stabilizing cuff affixed to, and at least partially embedded within, the tubular structure. The tubular structure may include a tapered surface extending from an end of the tubular structure to an exterior surface of the catheter. A method of manufacturing a catheter assembly may include positioning a tubular structure about a catheter, positioning a stabilizing cuff near the tubular structure, and partially embedding at least a portion of the stabilizing cuff within the tubular structure while shaping the tubular structure to form a tapered surface. A temporary sleeve may be positioned about the tubular structure prior to shaping the tubular structure. The tubular structure may also be preformed to include a tapered end prior to positioning the tubular structure about the catheter.
摘要:
An access port for subcutaneous implantation is disclosed. Such an access port may comprise a body for capturing a septum for repeatedly inserting a needle therethrough into a cavity defined within the body. Further, the access port may include at least one feature structured and configured for identification of the access port subsequent to subcutaneous implantation. Methods of identifying a subcutaneously implanted access port are also disclosed. For example, a subcutaneously implanted access port may be provided and at least one feature of the subcutaneously implanted access port may be perceived. Further, the subcutaneously implanted access port may be identified in response to perceiving the at least one feature. In one embodiment, an identification feature is engraved or otherwise defined by the access port, so as to be visible after implantation via x-ray imaging technology.