Abstract:
Statistical methods are used to observe packet flow arrival processes and to infer routing changes from those observations. Packet flow arrivals are monitored using NetFlow or another packet flow monitoring arrangement. Packet flow arrivals are quantified by counting arrivals per unit time, or by measuring an inter-arrival time between flows. When a change in packet flow arrivals is determined to be statistically significant, a change in network routing protocol is reported.
Abstract:
A system and method to use network flow records to generate information about changes in network routing and to understand the impact of these changes on network traffic. The inferences made can be determinative, if sufficient information is available. If sufficient information is not available to make determinative inferences, inferences may be made that narrow the range of possible changes that may have occurred to network traffic and the underlying network.
Abstract:
A method and apparatus for providing event correlation in a network are disclosed. For example, the method extracts a plurality of events of interest from a database, and creates one or more event time series from the plurality of events of interest, wherein each of the one or more event time series comprises a set of events of a same type and of a same location that occur within a given time period. The method forms one or more composite events from the one or more event time series, and performs one or more pair-wise correlations for at least one of: the event time-series, or the one or more composite events. The method then identifies one or more pair-wise correlations that are statistically significant.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.
Abstract:
Statistical methods are used to observe packet flow arrival processes and to infer routing changes from those observations. Packet flow arrivals are monitored using NetFlow or another packet flow monitoring arrangement. Packet flow arrivals are quantified by counting arrivals per unit time, or by measuring an inter-arrival time between flows. When a change in packet flow arrivals is determined to be statistically significant, a change in network routing protocol is reported.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a desired quantity of flow record to sample, receiving a plurality of network flow record each summarizing a network flow of packets, calculating a hash for each flow record of based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, generating a priority from the calculated hash for each respective flow record, and sampling exactly the desired quantity of flow records, selecting flow records having a highest priority first. In one aspect, the method further partitions the plurality of flow records into groups based on flow origin and destination, generates an individual priority for each partitioned group, and separately samples exactly the desired quantity of flow records from each partitioned group, selecting flows having a highest individual priority first.
Abstract:
A system and method to use network flow records to generate information about changes in network routing and to understand the impact of these changes on network traffic. The inferences made can be determinative, if sufficient information is available. If sufficient information is not available to make determinative inferences, inferences may be made that narrow the range of possible changes that may have occurred to network traffic and the underlying network.
Abstract:
A method and apparatus for providing event correlation in a network are disclosed. For example, the method extracts a plurality of events of interest from a database, and creates one or more event time series from the plurality of events of interest, wherein each of the one or more event time series comprises a set of events of a same type and of a same location that occur within a given time period. The method forms one or more composite events from the one or more event time series, and performs one or more pair-wise correlations for at least one of: the event time-series, or the one or more composite events. The method then identifies one or more pair-wise correlations that are statistically significant.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a desired quantity of flow record to sample, receiving a plurality of network flow record each summarizing a network flow of packets, calculating a hash for each flow record of based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, generating a priority from the calculated hash for each respective flow record, and sampling exactly the desired quantity of flow records, selecting flow records having a highest priority first. In one aspect, the method further partitions the plurality of flow records into groups based on flow origin and destination, generates an individual priority for each partitioned group, and separately samples exactly the desired quantity of flow records from each partitioned group, selecting flows having a highest individual priority first.
Abstract:
Disclosed herein are systems, computer-implemented methods, and computer-readable media for sampling network traffic. The method includes receiving a plurality of flow records, calculating a hash for each flow record based on one or more invariant part of a respective flow, generating a quasi-random number from the calculated hash for each respective flow record, and sampling flow records having a quasi-random number below a probability P. Invariant parts of flow records include destination IP address, source IP address, TCP/UDP port numbers, TCP flags, and network protocol. A plurality of routers can uniformly calculate hashes for flow records. Each router in a plurality of routers can generate a same quasi-random number for each respective flow record and uses different values for probability P. The probability P can depend on a flow size. The method can divide the quasi-random number by a maximum possible hash value.