Abstract:
An air sterilization device with low aerosol bounce includes an air conditioning pipe, a porous filter media, and a UV light generator. This porous filter media, it is secured on the fixing portion. This porous filter media has many irregularly distributed channels. The channel is coated with a coating layer having a thickness between 10 μm to 1000 μm sticking aerosols for avoiding bounce effect. The UV light generator can emit UV light to kill biological aerosols. It is suitable for long-term usage. So, the bounce effect of aerosols can be significantly reduced. The maintenance cost is low. The sterilization effect is excellent. Plus, the flow rate of the air conditioning system remains high.
Abstract:
A biological safety cabinet (BSC) has an air curtain to isolate air inside and outside the BSC. A most preferable slight concave curtain of air can be obtained. With the curtain, neither contamination in the BSC leaks out nor outside contamination enters the BSC. Furthermore, no circulation is formed in the BSC by blowing the air curtain. Thus, the operator using the BSC and the product in the BSC are both well protected.
Abstract:
An air sterilization device with low aerosol bounce includes an air conditioning pipe, a porous filter media, and a UV light generator. This porous filter media, it is secured on the fixing portion. This porous filter media has many irregularly distributed channels. The channel is coated with a coating layer having a thickness between 10 μm to 1000 μm sticking aerosols for avoiding bounce effect. The UV light generator can emit UV light to kill biological aerosols. It is suitable for long-term usage. So, the bounce effect of aerosols can be significantly reduced. The maintenance cost is low. The sterilization effect is excellent. Plus, the flow rate of the air conditioning system remains high.
Abstract:
An air curtain-assisted exhaust method and a device thereof are provided. Air curtain generators are disposed on a worktable to enclose an encircled area in the worktable. A receiving hood is disposed above the worktable, wherein the vertical lower part of the outer edge of the receiving hood completely covers the encircled area. Then, the air curtain generators are started to blow out air curtains toward an opening of the receiving hood, and the receiving hood is started to suck an air flow. A shielding space is defined by the air flow sucked by the receiving hood and the air curtains, so that the air curtains may guide a smoke generated inside the shielding space to the receiving hood to be exhausted, thereby achieving the effect of auxiliary exhaust, and may restrict the smoke in the shielding space to prevent the smoke from diffusing laterally.
Abstract:
A biological hazard protection body bag comprises an non-transparent outer bag case and a transparent inner bag case, which transparent inner bag case provides a vacuum filtration device formed by a check valve and medical grade filter screen for achieving a vacuum state inside the inner space of the transparent inner bag case by air suction through the check valve of the vacuum filtration device, and the air extracted from the inner space of the transparent inner bag case is completely filtrated by the medical grade filter screen to prevent the pathogen from being extracted from the inner space of the transparent inner bag case to isolate the corpse inside the transparent inner bag case under nearly vacuum state with gastight bag case construction to achieve the purpose of prevent infection or dissemination of pathogen.
Abstract:
The present invention is a fume hood capable of exhausting contaminant, having an air pipe in a sash and a suction slot corresponding to the air pipe deposed at the front rim of the bottom surface to obtain an air curtain, where contaminant is efficiently prevented from leakage and energy is saved.
Abstract:
The present invention is a push-pull ventilation hood having a push device to obtain a push air flow and a pull device to exhaust contaminant flow with an exhaust opening and the two devices properly coordinated with each other, wherein, when the push flow flows through a contaminant source, a contaminated flow of the push flow is exhausted through the exhaust opening. Based on the design process according to the present invention, a push-pull hood with the highest efficiency of push velocity can be designed and the push-pull hood can economically and effectively control the contaminant source.
Abstract:
A method for removing environmental contaminants includes: blowing the environmental contaminants along a predetermined direction with a blower; and extracting the blown environmental contaminants along the predetermined direction with a ventilation device; further characterized in: the placement of a guiding side plates between the blower and the ventilation device for guiding a flow path of air flow; and operating with a low blowing force and a strong vacuum force. The present invention also provides a device for removing environmental contaminants.