Method, system and apparatus for determining and modifying saliency of a visual medium
    1.
    发明授权
    Method, system and apparatus for determining and modifying saliency of a visual medium 有权
    用于确定和修改视觉介质显着性的方法,系统和装置

    公开(公告)号:US08243068B2

    公开(公告)日:2012-08-14

    申请号:US12153394

    申请日:2008-05-19

    CPC classification number: G06K9/4671

    Abstract: A method, system and apparatus for determining and modifying saliency of a visual medium are provided. The method, system and apparatus may obtain saliency values for a visual medium based on a plurality of visual channels. The saliency values may be obtained based on at least one of computer-generated modeling, user-specified input and eye-tracking. The method, system and apparatus may aggregate the obtained saliency values and classify regions of the visual medium based on the aggregated saliency values. The visual channels may include one or more of absolute mean curvature, a gradient of mean curvature, a gradient of color intensity, color luminance, color opponency, color saturation, lighting and focus. When calculating mean curvature, the method, system and apparatus may calculate a change in mean curvature for a plurality of vertices around a region and displace the vertices in accordance with the calculated change in mean curvature to change a saliency of the region.

    Abstract translation: 提供了一种用于确定和修改视觉介质的显着性的方法,系统和装置。 方法,系统和装置可以基于多个视觉通道获得视觉介质的显着值。 可以基于计算机生成的建模,用户指定的输入和眼睛跟踪中的至少一个获得显着性值。 方法,系统和装置可以聚合获得的显着值,并根据聚合显着值对视觉介质的区域进行分类。 视觉通道可以包括绝对平均曲率,平均曲率的梯度,颜色强度的梯度,颜色亮度,颜色对比度,颜色饱和度,照明和焦点中的一个或多个。 当计算平均曲率时,方法,系统和装置可以计算围绕一个区域的多个顶点的平均曲率的变化,并且根据所计算的平均曲率的变化来移位顶点以改变该区域的显着性。

    Method, system and apparatus for determining and modifying saliency of a visual medium
    2.
    发明申请
    Method, system and apparatus for determining and modifying saliency of a visual medium 有权
    用于确定和修改视觉介质显着性的方法,系统和装置

    公开(公告)号:US20090092314A1

    公开(公告)日:2009-04-09

    申请号:US12153394

    申请日:2008-05-19

    CPC classification number: G06K9/4671

    Abstract: A method, system and apparatus for determining and modifying saliency of a visual medium are provided. The method, system and apparatus may obtain saliency values for a visual medium based on a plurality of visual channels. The saliency values may be obtained based on at least one of computer-generated modeling, user-specified input and eye-tracking. The method, system and apparatus may aggregate the obtained saliency values and classify regions of the visual medium based on the aggregated saliency values. The visual channels may include one or more of absolute mean curvature, a gradient of mean curvature, a gradient of color intensity, color luminance, color opponency, color saturation, lighting and focus. When calculating mean curvature, the method, system and apparatus may calculate a change in mean curvature for a plurality of vertices around a region and displace the vertices in accordance with the calculated change in mean curvature to change a saliency of the region.

    Abstract translation: 提供了一种用于确定和修改视觉介质的显着性的方法,系统和装置。 方法,系统和装置可以基于多个视觉通道获得视觉介质的显着值。 可以基于计算机生成的建模,用户指定的输入和眼睛跟踪中的至少一个获得显着性值。 方法,系统和装置可以聚合获得的显着值,并根据聚合显着值对视觉介质的区域进行分类。 视觉通道可以包括绝对平均曲率,平均曲率的梯度,颜色强度的梯度,颜色亮度,颜色对比度,颜色饱和度,照明和焦点中的一个或多个。 当计算平均曲率时,方法,系统和装置可以计算围绕一个区域的多个顶点的平均曲率的变化,并且根据所计算的平均曲率的变化来移位顶点以改变该区域的显着性。

    Automated learning of model classifications
    3.
    发明授权
    Automated learning of model classifications 有权
    模型分类的自动学习

    公开(公告)号:US07639868B1

    公开(公告)日:2009-12-29

    申请号:US10869061

    申请日:2004-06-16

    CPC classification number: G06K9/62 G06K9/46 G06N99/005 Y10S707/99933

    Abstract: A method of providing an automated classifier for 3D CAD models wherein the method provides an algorithm for learning new classifications. The method enables existing model comparison algorithms to adapt to different classifications that are relevant in many engineering applications. This ability to adapt to different classifications allows greater flexibility in data searching and data mining of engineering data.

    Abstract translation: 一种为3D CAD模型提供自动分类器的方法,其中该方法提供用于学习新分类的算法。 该方法使现有的模型比较算法适应于许多工程应用中相关的不同分类。 适应不同分类的这种能力使工程数据的数据搜索和数据挖掘具有更大的灵活性。

    Automated learning of model classifications
    4.
    发明授权
    Automated learning of model classifications 有权
    模型分类的自动学习

    公开(公告)号:US07889914B2

    公开(公告)日:2011-02-15

    申请号:US12479414

    申请日:2009-06-05

    CPC classification number: G06K9/62 G06K9/46 G06N99/005 Y10S707/99933

    Abstract: A method of providing an automated classifier for 3D CAD models wherein the method provides an algorithm for learning new classifications. The method enables existing model comparison algorithms to adapt to different classifications that are relevant in many engineering applications. This ability to adapt to different classifications allows greater flexibility in data searching and data mining of engineering data.

    Abstract translation: 一种为3D CAD模型提供自动分类器的方法,其中该方法提供用于学习新分类的算法。 该方法使现有的模型比较算法适应于许多工程应用中相关的不同分类。 适应不同分类的这种能力使工程数据的数据搜索和数据挖掘具有更大的灵活性。

    AUTOMATED LEARNING OF MODEL CLASSIFICATIONS
    5.
    发明申请
    AUTOMATED LEARNING OF MODEL CLASSIFICATIONS 有权
    自动学习模型分类

    公开(公告)号:US20090319454A1

    公开(公告)日:2009-12-24

    申请号:US12479414

    申请日:2009-06-05

    CPC classification number: G06K9/62 G06K9/46 G06N99/005 Y10S707/99933

    Abstract: A method of providing an automated classifier for 3D CAD models wherein the method provides an algorithm for learning new classifications. The method enables existing model comparison algorithms to adapt to different classifications that are relevant in many engineering applications. This ability to adapt to different classifications allows greater flexibility in data searching and data mining of engineering data.

    Abstract translation: 一种为3D CAD模型提供自动分类器的方法,其中该方法提供用于学习新分类的算法。 该方法使现有的模型比较算法适应于许多工程应用中相关的不同分类。 适应不同分类的这种能力使工程数据的数据搜索和数据挖掘具有更大的灵活性。

Patent Agency Ranking