Abstract:
Methods for forming conductive layers. A layer of metal composite is applied on a substrate, comprising a plurality of metal flakes, a plurality of nanometer metal spheres, and a plurality of mixed metal precursors. The plurality of mixed metal precursors comprises a mixture of inorganic salts and organic acidic salts. The layer of metal composite is cured to induce an exothermic reaction, thereby forming a conductive layer on the substrate at a relatively low temperature (
Abstract:
Methods for forming conductive layers. A layer of metal composite is applied on a substrate, comprising a plurality of metal flakes, a plurality of nanometer metal spheres, and a plurality of mixed metal precursors. The plurality of mixed metal precursors comprises a mixture of inorganic salts and organic acidic salts. The layer of metal composite is cured to induce an exothermic reaction, thereby forming a conductive layer on the substrate at a relatively low temperature (
Abstract:
Methods for forming conductive layers. A layer of metal composite is applied on a substrate, comprising a plurality of metal flakes, a plurality of nanometer metal spheres, and a plurality of mixed metal precursors. The plurality of mixed metal precursors comprises a mixture of inorganic salts and organic acidic salts. The layer of metal composite is cured to induce an exothermic reaction, thereby forming a conductive layer on the substrate at a relatively low temperature (
Abstract:
Methods for forming conductive layers. A layer of metal composite is applied on a substrate, comprising a plurality of metal flakes, a plurality of nanometer metal spheres, and a plurality of mixed metal precursors. The plurality of mixed metal precursors comprises a mixture of inorganic salts and organic acidic salts. The layer of metal composite is cured to induce an exothermic reaction, thereby forming a conductive layer on the substrate at a relatively low temperature (
Abstract:
A method for fabricating the floating gate of a split-gate flash memory. A patterned sacrificial layer is formed over a substrate. A doped polysilicon layer and an insulation layer are formed in sequence over the sacrificial layer. The doped polysilicon layer and the insulation layer above the sacrificial layer are removed by chemical-mechanical polishing. The exposed doped polysilicon layer is removed. Finally, the sacrificial layer is removed to complete the fabrication of the floating gate.