摘要:
A head-end circuit comprises first and second continuous light sources, first and second modulators. The first and the second continuous light sources provide first and second optical signals respectively corresponding to first wavelength and second wavelength, which is different from the first wavelength. The first modulator modulates the first optical signal based on first clock signal to generate an optical clock signal. The second modulator modulates the second optical signal based on downlink data to generate optical downlink data with the carrier of the second optical signal. The optical clock signal and the optical down link data are outputted to a remote antenna unit via first fiber path.
摘要:
An optical network and an optical signal modulation method thereof are provided. The optical network includes an optical fiber and a remote node (RN). The RN receives a continuous carrier wave from the optical fiber and modulates the continuous carrier wave to generate a first frequency offset carrier wave The frequency of the first frequency offset carrier wave is different from that of the continuous carrier wave. A first user device re-modulates and loads data to the first frequency offset carrier wave to generate a first upstream signal. The frequency of the first upstream signal is the same as that of the first frequency offset carrier wave. The RN inputs the first upstream signal into the optical fiber.
摘要:
An optical fiber communication system is provided, including a central office and an optical network unit. The central office generates a first downstream signal and a second downstream signal according to a radio frequency signal and a baseband signal, respectively. The optical network unit is coupled to the central office to receive the first downstream signal and the second downstream signal through a first fiber and a second fiber different from the first fiber, respectively, such that the optical network unit only modulates the second downstream signal to generate an upstream signal and then delivers the upstream signal to the central office through the first fiber, thereby decreasing signal Rayleigh backscatter noise.
摘要:
An optical transmitter is of the reflective modulation type and has a means of generating reflection, a mixer for mixing a data stream and a sub-carrier, and an optical modulator for modulating an optical carrier with the output from the mixer in order to avoid optical beat-interference noise arising from, for example, Rayleigh backscattering. The modulator is in one embodiment of the interferometric type such as a Mach-Zehnder Modulator (MZM) operated to suppress the optical carrier at the transmitter output in order to reduce optical beat interference noise. The modulator preferably implements CSS-AMPSK modulation, which suppresses optical beat noise and achieves strong dispersion tolerance, enabling, for example, 10 Gb/s data transmission over 100 km distance without dispersion compensation. The transmitter may have a duobinary encoder, which encodes the data prior to mixing with the sub-carrier.
摘要:
The present invention discloses a fiber sensing system with self-detection mechanism which utilizes a central office to control secondary ring architecture formed by fiber sensor, remote node and optical coupler primarily. The secondary ring architecture is connected serially to form a primary ring architecture. The central office has a tunable laser light source that can deliver the light source to the fiber sensor. Since the fiber sensor has reflective ability, all light source signal sent by the tunable laser light source will be detected and measured by the fiber sensor. Thus central office can detect all signals reflected by the fiber sensor and produce a spectrum for analyzing fault point locations. The present invention can greatly enhance survivability and sensing capacity of all fiber sensors, so that when a fault point caused by environmental change within the fiber, it will not effect the overall operation of the sensing mechanism. The application of fiber sensor can also reduce cost and complexity of the overall fiber network topology.
摘要:
An optical fiber communication system is provided, including a central office and an optical network unit. The central office generates a first downstream signal and a second downstream signal according to a radio frequency signal and a baseband signal, respectively. The optical network unit is coupled to the central office to receive the first downstream signal and the second downstream signal through a first fiber and a second fiber different from the first fiber, respectively, such that the optical network unit only modulates the second downstream signal to generate an upstream signal and then delivers the upstream signal to the central office through the first fiber, thereby decreasing signal Rayleigh backscatter noise.
摘要:
A fiber sensing system is provided, including a plurality of ring structures, an optical coupler and a switching unit. Each of the ring structures has at least one fiber sensor to receive and reflect a light source signal. The optical coupler is directly connected to the ring structures thereby injecting the light source signal into the ring structures to form a plurality of loops. The switching unit is disposed in a central office having two output terminals coupled to the ring structure respectively by the optical coupler, thereby forming a first path and a second path in the loops, such that the light source signal is injected into the first path and the second path sequentially by the switching unit.
摘要:
A circuit for switching a signal path includes a path selection element, a detector, a switch, and a control circuit. A first end and a third end of the path selection element are coupled to the detector and the switch, respectively. The switch is normally in a conductive status for outputting an upload signal through the path selection element and the switch when the upload signal is input from a second end of the path selection element. When a download signal is transmitted to the detector, the detector transmits the download signal to the path selection element and enables a detection signal. The control circuit switches the switch status to an open-circuit status for outputting the download signal isolated by the switch from the second end of the path selection element. Until the download signal is transmitted completely, the control circuit switches the switch status to the conductive status.
摘要:
A background noise-immune LED-based communication device comprises at least one LED signal transmitter emitting a Manchester code signal generated by a Manchester coding technology; and at least one optical receiver receiving the Manchester code signal from the LED signal transmitter. The present invention applies the Manchester coding technology to visible-light communication devices, enabling the LED-based communication device to transmit the Manchester code signal, whereby is decreased noise and promoted signal quality.
摘要:
A fiber sensing system is provided, including a plurality of ring structures, an optical coupler and a switching unit. Each of the ring structures has at least one fiber sensor to receive and reflect a light source signal. The optical coupler is directly connected to the ring structures thereby injecting the light source signal into the ring structures to form a plurality of loops. The switching unit is disposed in a central office having two output terminals coupled to the ring structure respectively by the optical coupler, thereby forming a first path and a second path in the loops, such that the light source signal is injected into the first path and the second path sequentially by the switching unit.