Abstract:
There is provided an inertial latching system which includes a first latch member configured to engage a second latch member at a junction point. The first latch member includes a latch pivot mounted to the base. One side of the latch pivot extends to form a first arm whilst a balancing mass is found at another side of the latch pivot. Joined to the first arm is a finger which provides a contact line ending in a proximal point. The second latch member has a contact surface which provides a contact point. The inertial latching system is configured such that the ratio of a first length to a second length is smaller than the ratio of a third length to a fourth length. The first length is defined as the distance from the proximal point to the junction point, the second length is defined as the distance from the proximal to the latch pivot, the third length is defined as the distance from the contact point to the junction point, and the fourth length is defined as a distance from the contact point to the actuator pivot.
Abstract:
A shock mount is configured sized to receive a disc drive storage system therein and is configured to surround the disc drive storage system. The shock mount has a plurality of sides and is shaped to fit in a housing. A plurality of shock absorbing protrusions extend from the shock mount. The protrusions are of a shock absorbing material and are configured to hold the data storage device at a spaced apart position from the housing and provide shock absorption therebetween.
Abstract:
Disclosed is a magnetic latch for a disc drive. Upper and lower voice coil magnet pole pieces include extensions which bend toward one another, defining a gap therebetween. The gap creates a magnetic field which attracts and holds a disc drive actuator in a park position when the drive is not in use.
Abstract:
A voice coil motor assembly in a disc drive includes first and second pole pieces held in spaced relationship to one another such that a gap is defined therebetween. A permanent magnet is located on the first pole piece within the gap and a dummy magnet is located on the second pole piece across the gap from the permanent magnet. The first and second pole pieces, together with the magnet and the dummy magnet, form a magnetic circuit conducting lines of magnetic flux within the voice coil motor and across the gap. The dummy magnet acts to encourage magnetic flux to flow across the gap in a manner such that the roll and pitch torque constants of the voice coil motor are reduced.