Abstract:
A system for tailoring a transfer nip electric field includes a transfer roll, a backup roll forming a transfer nip with the transfer roll, and a pre-nip roll positioned upstream from the transfer and backup rolls and the transfer nip such that a toner image-supporting transfer belt moving past the pre-nip, transfer and backup rolls separately makes contact with, wraps partially around, and rotates each of the rolls as a media sheet is fed into the transfer nip after first passing through a gap defined between the pre-nip and transfer rolls such that by presetting the position, geometry and charge of the pre-nip roll relative to the transfer and backup rolls and the transfer belt an electrical field at the transfer nip can be tailored for enhanced toner transfer from the transfer belt to the media sheet.
Abstract:
A system for tailoring a transfer nip electric field includes a transfer roll, a backup roll forming a transfer nip with the transfer roll, and a pre-nip roll positioned upstream from the transfer and backup rolls and the transfer nip such that a toner image-supporting transfer belt moving past the pre-nip, transfer and backup rolls separately makes contact with, wraps partially around, and rotates each of the rolls as a media sheet is fed into the transfer nip after first passing through a gap defined between the pre-nip and transfer rolls such that by presetting the position, geometry and charge of the pre-nip roll relative to the transfer and backup rolls and the transfer belt an electrical field at the transfer nip can be tailored for enhanced toner transfer from the transfer belt to the media sheet.
Abstract:
By shifting the peak height of the tread on one side of the tire from the centerline (CL), for a tire intended for cambered use on a vehicle and/or exposure to lateral loading, improvements in the footprint shape, pressure distribution, area and footprint shape factor (FSF) are obtained. In an illustrated embodiment, 0.127 cm to 5 cm (deep) of mold material are removed from one side of the centerline (CL) of the crown in a conventional mold, at 15% to 85% of the distance from the centerline to the shoulder area of the mold (one-half inch to five and one-half inches in the illustrated tires), to obtain a mold shape having the designated change in tread peak height.