摘要:
A method and apparatus is provided for operating an electrochemical fuel cell with periodic momentary fuel starvation at the anode. It is believed that such momentary periodic fuel starvation conditions cause the anode potential to increase, resulting in the oxidation and removal of electrocatalyst poisons from the anode electrocatalyst and improved fuel cell performance. In a preferred method, while successive localized portions of the fuel cell anode are momentarily periodically fuel starved, the remainder of the fuel cell anode remains electrochemically active and saturated with fuel such that the fuel cell is continually available to generate power.
摘要:
A method and apparatus are provided for distributing water produced by the electrochemical reaction to an ion-exchange membrane in a electrochemical fuel cell. Water distribution within a fuel cell is improved to reduce membrane dryness near the oxidant stream inlet and to also reduce saturation of the oxidant stream near the oxidant stream outlet, thereby reducing electrode flooding. The method comprises periodically reversing the flow direction of an oxidant stream through a fuel cell flow field. The apparatus comprises an oxidant stream flow switching device for periodically switching the flow direction of an oxidant stream through a fuel cell flow field. In one embodiment the apparatus further comprises a water recycler for capturing water from the oxidant exhaust stream and returning the captured water to the oxidant supply stream when the flow direction is reversed.
摘要:
A method and apparatus are provided for distributing water produced by the electrochemical reaction to ion-exchange membranes in an array comprising a plurality of electrochemical fuel cell stacks. Water distribution within individual fuel cell stacks within the array is improved to reduce membrane dryness near the oxidant stream inlet and to also reduce saturation of the oxidant stream near the oxidant stream outlet, thereby reducing electrode flooding. The method comprises periodically reversing the oxidant stream flow direction within at least one of the plurality of fuel cell stacks. The apparatus comprises an oxidant stream flow switching device for periodically switching the flow direction of an oxidant stream through an individual fuel cell stack.