Abstract:
An interface control for use in a field device management system coupled to a set of smart field devices automatically performs functions related to communication between a device, a database and a user of the management system and functions related to interfacing with a user in a manner which is transparent to the software application running on the management system. The control monitors a device, or a block or a parameter of a device, displays information pertaining to the device, block or parameter to a user, receives information pertaining to such device, block, or parameter from a user and the device, automatically updates the displayed information, and implements changes to the device block or parameter specified by the user. A timeline control specifies a time at which past, present or future configurations of devices, blocks, parameters, or other data associated with one or more devices is to be displayed.
Abstract:
A computer-based database management method permits management of a configuration database associated with one of a plurality of devices. Each device has a variable configuration which includes at least one adjustable parameter. The method includes the steps of selecting a particular device, selecting a particular parameter of the particular device, assigning a particular value for the particular parameter at a particular time, communicating the particular value for the particular parameter to the particular device at the particular time, creating a transaction record, and storing the transaction record in a configuration database. The transaction record includes an identifier uniquely identifying the particular device and further specifies the particular parameter of the particular device, the particular value for the particular parameter, and the particular time at which the particular value is to be applied to the particular parameter.
Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signals, which can be instructions representative of commands or instruction sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well. The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.
Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signal, which can be instructions representative of commands or instructions sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well, The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.
Abstract:
A field device management system includes an interface which provides communication between a software application implemented on the system and a set of smart field devices coupled to the system. The interface accesses information from and/or writes information to the smart field devices, a database and device descriptions associated with the smart field devices to provide a consistent communication connection with such devices, database and device descriptions, irrespective of the types of smart field devices connected to the system. The interface is based on a predefined hierarchy of categories of information defining the device data associated with the smart field devices, and is implemented using an OLE object for each of the predefined categories of information. In particular, each OLE object stores device data associated with one of the predefined categories of information and includes instructions for communicating with one of the smart field devices, one of the device descriptions and/or the database to effect a command related to the stored device data.
Abstract:
A smart field-mounted control unit, for controlling a process, receives signals and sends a command output over a two-wire circuit which powers the control unit. An input section receives the signals, which can be instructions representative of commands or instruction sets, process variables sensed by external control units or setpoints representative of a desired process state. The instructions are representative of a control requirement of the process and adjust a controlling section in the control unit to generate the command output in conformance with the control requirement. The command output can be a function of the difference between the process setpoint and a process variable, or a function of a linear combination of a process variable and its calculated time integral and time derivative functions. A sensing section in the control unit can sense and scale a process variable for generating the command output as well. The control unit can include a regulator section, controlled by the command output, which regulates application of a mechanical, hydraulic, pneumatic or electromagnetic force applied to the process.