Abstract:
Techniques for calibrating a high fidelity (HF) model of molten droplet coalescence are disclosed. An example method includes selecting initial HF parameter values for the HF model. The method also includes iteratively refining the HF parameter values until the HF model converges with experimental data. At each iteration, the HF parameter values are applied to the HF model and a plurality of simulations are run using the HF model to generate the simulated numerical data. For each simulation, a Reduced Order Model (ROM) is fitted to the simulated numerical data to generate ROM parameter values for ROM parameters of the ROM. Correlations between the ROM parameters and the HF parameters are identified to narrow the search space to be searched in a next iteration.
Abstract:
A configuration system, for a process control system configured to perform process control, the configuration system includes, not limited to, a) an editor configured to perform one of generate and update one of a definition module and an application module, wherein a set of the definition module and the application module comprises control logic and design data for a part of an industrial plant. The editor includes, not limited to, a-1) a definition module generator configured to generate or update one of a definition module control logic and an application module control logic based on the definition module design data. The editor is implemented by one or more processors.
Abstract:
An automation device includes a master module, and a slave unit having a slave modules, where an interface module (IM) of the slave modules of the slave unit is connected to the master module via a bus, where each of the modules is parameterizable using a message transmitted to the IM by the master module, the message includes a data area for each of the slave modules for parameterization of each of the slave modules, and the message includes a data area for each slave module for its parameterization, wherein at least one default parameter data record is stored in at least one of the slave modules, and wherein a data record index, which is stored in that data area of the message which is provided for the at least one slave module is provided for accessing the at least one default parameter data record.
Abstract:
A method for controlling at least one operational parameter of a plant (1) having a combustion unit (3) can include estimating a status of at least one operational variable of the plant to identify an estimated value for the operational variable. For each operational variable, the estimated value for the operational variable can be compared with a measured value of the operational variable to determine an uncertainty value based on a difference in value between the measured value and the estimated value for the operational variable. A control signal can be generated based on a reference signal, the measured value, and the deviation value for sending to at least one element of the plant (1) for controlling a process of the plant (1).
Abstract:
A method is disclosed for parameterizing an AS-i slave. In order to improve the parameterization of an AS-i slave, the following steps are carried out: determining the parameters of the AS-i slave to be parameterized via an engineering tool; transmitting the determined parameters to an AS-i master via a first telegram; receiving the first telegram, which contains the determined parameters of the AS-i slave to be parameterized, via a receiving unit of the AS-i master; automatically converting the received first telegram into an AS-i telegram by a processing unit of the AS-i master, such that the AS-i telegram contains the determined parameters of the AS-i slave to be parameterized; and transmitting the AS-i telegram, which contains the determined parameters of the AS-i slave to be parameterized, to the AS-i slave to be parameterized via a transmission unit of the AS-i master.
Abstract:
A method for configuring an arrangement having a command level device and at least one arrangement having a field device connected to the command level device, for protecting controlling or monitoring an electrical switch or power supply gear. A command level configuration file describing the configuration of the arrangement is generated. After replacement of the field device by a new field device, a new command level configuration file is generated to replace the old command level configuration file, taking account of the properties of the new field device and a new field device parameter data set is generated with the new command level configuration file, by means of which the new field device is parameterized, telegram configuration files being extracted from the old command level configuration file, describing the data telegram generation of the old field device and the new command level configuration file and the new field device parameter data set are generated with said telegram configuration data such that the new field device generates data telegrams with a data telegram addressing matching that of the old field device.
Abstract:
A method and system to enhance yield in multi-process manufacturing. The method comprising the translation of a performance parameter of a product into input variables to operate tools carrying our cooperating processes which built a structural element which determines the performance parameter, wherein the individual tools are process controlled. The method further comprising the integration of process control of individual separate processes or of stages in a process, into a combined and comprehensive (modular) process control in which the process parameters of a process are enslaved to accomplish the target output of the final process. Hence target output values of intermediate processes are dynamically reassigned during the manufacturing with respect to their initially designed values, in accordance with the output of their cooperating processes.
Abstract:
An interface control for use in a field device management system coupled to a set of smart field devices automatically performs functions related to communication between a device, a database and a user of the management system and functions related to interfacing with a user in a manner which is transparent to the software application running on the management system. The control monitors a device, or a block or a parameter of a device, displays information pertaining to the device, block or parameter to a user, receives information pertaining to such device, block, or parameter from a user and the device, automatically updates the displayed information, and implements changes to the device block or parameter specified by the user. A timeline control specifies a time at which past, present or future configurations of devices, blocks, parameters, or other data associated with one or more devices is to be displayed.
Abstract:
A register of an industrial equipment production system acquires setting information adjusted in an industrial equipment and registers the setting information in a server. A receiver receives a production instruction for the industrial equipment. An identifier identifies, in a case where the production instruction is received, the setting information on the industrial equipment to be produced in accordance with the production instruction based on the setting information registered in the server.
Abstract:
A device for computing correction for control parameter in a manufacturing process executed on a manufacturing apparatus includes circuitry which acquires an index representing fluctuation in a manufacturing apparatus, acquires an apparatus model and a process model, acquires an output from a sensor in the manufacturing apparatus, transforms the output into first fluctuation for a process element, transforms the index into second fluctuation for the process element based on the apparatus model, computes fluctuation for performance indicator from the first and second fluctuation based on the process model, computes correction for the performance indicator from control range for the performance indicator and the fluctuation for the performance indicator, and converts the correction for the performance indicator into correction for each process element based on the process model such that correction for control parameter in process executed on the manufacturing apparatus is computed from the correction converted for each process element.