摘要:
A voltage acquisition circuit for sensing input voltage signals in each phase of an electrical service includes a non-active current transformer configuration that is operable over a wide input voltage range. The current transformer configuration includes primary and secondary windings, an input resistor and a burden resistor across which an output voltage is defined. The input resistor may be relatively large, such as on the order of about one MΩ and the transformer core may have a nanocrystalline core characterized by predictable magnetic properties versus varied transformer flux levels. This operational predictability facilitates phase compensation via digital filtering or otherwise for any phase shift induced between input and output voltages of the current transformer. The subject voltage acquisition circuits may be provided to sense each phase of a single-phase or polyphase electrical service, whereby the sensed voltages are subsequently provided to additional components of an electricity meter, such as a power supply or other processing components, including an A/D converter and microprocessor for determining energy quantities.
摘要:
Disclosed are apparatus and methodology subject matters for providing improved functionality of a meter in a 2-way communications arrangement, such as an Advanced Metering System (AMS) or Infrastructure (AMI). More particularly, the present technology relates to methodologies and apparatus for providing load sensing for utility meters which preferably are operable with remote disconnect features in an Advanced Metering Infrastructure (AMI) open operational framework. Meters per the present subject matter utilize a detection circuit, and separately utilize certain remote disconnect functionality. In particular, disconnect functionality is coupled with consideration of electric load information, such as load current as determined by the metering functionality. Providing such functionality allows for the following, all in accordance with the present subject matter: (a) frequent on/off cycling of the electrical service, (b) disconnection of service while full rated current is being delivered through the switch contacts, (c) preservation of switch contact integrity by selective switch operation based on current load, and (d) providing immediate override functionality if needed.