Abstract:
A preamplifier is provided for a radio frequency (RF) receiver coil in a magnetic resonance imaging (MRI) system. The preamplifier includes an amplifier configured to receive at least one magnetic resonance (MR) signal from the RF receiver coil and configured to generate an amplified MR signal. An input circuit is electrically connected to the amplifier. The input circuit is configured to be electrically connected to an output of the RF receiver coil for transmitting the at least one MR signal from the RF receiver coil to the amplifier. The input circuit includes an impedance transformer and a field effect transistor (FET). The FET is electrically connected between the impedance transformer and the amplifier. The FET has an FET impedance. The impedance transformer is configured to transform a source impedance of at least approximately 100 ohms. The impedance transformer is further configured to transform the FET impedance into a preamplifier input impedance of less than approximately 5 ohms.
Abstract:
A partially parallel acquisition RF coil array for imaging a sample includes at least a first, a second and a third coil adapted to be arranged circumambiently about the sample and to provide both contrast data and spatial phase encoding data.
Abstract:
A method and apparatus is disclosed to analogically combine MR signals from RF coils to form multiple sets of analogically combined MR signals, and then digitally combine the analogically combined sets of MR signals to provide a digitized signal set for image reconstruction. The analogical combining followed by the digital combining of acquired MR signals improves intrinsic SNR of the RF coils used for data acquisition from a field-of-view (FOV) without compromising FOV for simultaneous MR data acquisition.
Abstract:
A partially parallel acquisition RF coil array for imaging a human head includes at least a first, a second and a third loop coil adapted to be arranged circumambiently about the lower portion of the head; and at least a forth, a fifth and a sixth coil adapted to be conformably arranged about the summit of the head. A partially parallel acquisition RF coil array for imaging a human head includes at least a first, a second, a third and a fourth loop coil adapted to be arranged circumambiently about the lower portion of the head; and at least a first and a second Figure-8 or saddle coil adapted to be conformably arranged about the summit of the head.
Abstract:
A method, system, and apparatus including a magnetic resonance (MR) coil system that includes an MR coil element, a high input Pre-amplifier having a high input impedance field-effect-transistor (FET) with an impedance of one of substantially equal to 500 ohms and greater than 500 ohms, and a conductive path. The conductive path has a first end coupled to the MR coil element and a second end coupled to the high input Pre-amplifier such that the MR coil element is coupled in series with the high input Pre-amplifier. Further, the conductive path is free of a matching network intervening between the MR coil element and the high input Pre-amplifier.
Abstract:
A method, system, and apparatus including a radio-frequency (RF) phased coil array for a magnetic resonance (MR) imaging apparatus that includes a first RF coil element tuned to a first frequency and configured to receive MR signals and a second RF coil element tuned to a second frequency different than the first frequency and configured to receive MR signals.
Abstract:
A peripheral vascular coil array for providing images of a region of interest includes a first section including a first coil array and a second coil array in electrical communication with each other. The first and second coil arrays are disposed at opposite sides of the region of interest to produce a magnetic field in the region of interest. Each of the first and second coil arrays includes a butterfly coil and a loop coil.
Abstract:
A partially parallel acquisition RF coil array for imaging a human head having a summit and a lower portion includes at least a first, a second and a third quadrature coil pair adapted to be arranged circumambiently about the lower portion of the head; and at least a forth, a fifth and a sixth quadrature coil pair adapted to be conformably arranged about the summit of the head.
Abstract:
An apparatus for receiving magnetic resonance (MR) signals emitted by an imaging subject includes a receiver coil configured to detect the MR signals and a frequency translating preamplifier coupled to the receiver coil. The frequency translating preamplifier is configured to amplify the MR signals and to convert a frequency of the MR signals to an intermediate frequency. The frequency translating preamplifier may include an amplifier having a predefined gain, a frequency filter configured to filter at least one predetermined frequency and a mixer configured to convert the frequency of the MR signals to the intermediate frequency.
Abstract:
A radio frequency (RF) coil array that includes an RF coil support structure, and a plurality of RF coils coupled to the RF coil support structure, the RF coil support structure configured to enable the plurality of RF coils to be positioned in an underlap configuration and repositioned to an overlap configuration. A medical imaging system and a method of manufacturing the RF coil array are also described herein.