摘要:
The disclosure relates to a method for determining a sequence information element of a magnetic resonance sequence, a computer program product and an evaluation unit for performing such a method, and also a magnetic resonance device having such an evaluation unit. The method includes a determination of the sequence information element based on at least one pattern of the magnetic resonance sequence.
摘要:
The embodiments relate to a reconstructing an image of an examination object, a medical imaging apparatus, and a computer program product where a first image data record is acquired with a first imaging modality and at least one further image data record of at least one further imaging modality is provided. At least one first image is reconstructed on the basis of the first image data record using the at least one further image data record.
摘要:
A method and a pulse sequence optimization device to optimize a pulse sequence for a magnetic resonance system, wherein the pulse sequence includes at least one refocusing pulse, one slice selection gradient pulse, and one gradient spoiler pulse. The pulse duration of the refocusing pulse is shortened, and the pulse duration of the slice selection gradient pulse is adapted to the shortened pulse duration of the refocusing pulse. The amplitude of the slice selection gradient pulse is increased so that the same slice thickness is selected as before the shortening of the pulse duration of the refocusing pulse. The pulse shape of the gradient spoiler pulse is adapted without changing a total spoiler moment, and an optimally shortened pulse duration of the refocusing pulse is achieved when, with the adaptation of the pulse shape of the gradient spoiler pulse, the maximum amplitude of the gradient spoiler pulse equals the amplitude of the slice selection gradient pulse, and an edge steepness of the gradient spoiler pulse is minimized.
摘要:
In a method and magnetic resonance apparatus for image acquisition using a magnetic resonance sequence in which k-space corresponding to the imaging area is scanned, a first region of k-space, which does not include the center of k-space, is scanned radially along a number of spokes emanating from the k-space center, and at least two phase coding gradients are completely ramped up before the excitation pulse. A second central region of k-space, which remains without the first region, is scanned in a Cartesian manner. For contrast increase a pre-pulse is provided before a predetermined number of individual measurements. The number of spokes is selected so a measurement point nearest to the k-space center is measured at a predetermined point in time after the pre-pulse, which is optimal for signal-to-noise ratio and/or contrast.
摘要:
A method for optimizing a slice orientation for an examination using a magnetic resonance machine is provided. One or more device limitation of the magnetic resonance machine is provided. The device limitation includes, for at least one of the one or more gradient axes, a maximum gradient strength and/or a maximum gradient slew rate. At least one measurement parameter value of the examination and an original slice orientation are also provided. Rotational-angle information is determined from device limitations, measurement parameter values, and the original slice orientation. The rotational-angle information is used to optimize the original slice orientation, and the magnetic resonance machine captures measurement data on the basis of the optimized slice orientation.
摘要:
Disclosed herein are a method for the quantification of a volume element composition and a magnetic resonance device and computer program product for carrying out the method. The method for the quantification of a volume element composition of an object under examination using magnetic resonance signals, which are generated by the interaction of electromagnetic waves with at least one component of the volume element, includes providing of a plurality of signal evolutions including an evaluation signal evolution of the magnetic resonance signals and at least one database signal evolution. The signal evolutions are used to determine weighting factors for the at least one component of the volume element. Each signal evolution includes a plurality of corresponding evaluation points, where each evaluation point is assigned a signal value.
摘要:
In a method to operate a magnetic resonance apparatus with a magnetic resonance sequence—in particular a PETRA sequence—in which k-space is radially scanned for an image acquisition in a first region of k-space that does not include the center of k-space, and in which an excitation pulse is radiated as the full strength of at least two phase coding gradients is reached, and in which k-space is scanned in a Cartesian manner—in particular by single point imaging—in a second region of k-space remaining without the first region, the gradient strength corresponding to a shortest total acquisition time is determined automatically from predetermined sequence parameters and/or sequence parameters defined by a user. The sequence parameters parameterize the magnetic resonance sequence and describe the number of acquisitions for the regions of k-space and the repetition time, and the gradient strength is indicated to a user as a recommendation and/or is set automatically in the implementation of the magnetic resonance sequence.
摘要:
In a method to create an image data set by operating a magnetic resonance system, at least two phase coding gradients are switched in respective spatial directions, an RF excitation pulse is radiated and a raw data point in a k-space data set belonging to the image data set is read out a predetermined time period after the radiation of the RF excitation pulse. The predetermined time period thereby corresponds to the maximum of a set of a respective minimum time period for each of the at least two phase coding gradients. The minimum time period of the respective at least one of the at least two phase coding gradients is determined depending on the strength of the respective phase coding gradient such that the Nyquist theorem is complied with.
摘要:
In a magnetic resonance method and system to create a difference image, essentially only one k-space point in a k-space data set belonging to the difference image is acquired at least twice in the form of k-space measurement values after a radiation of an RF excitation pulse. The difference image is thereby created depending on acquired k-space data set by means of taking the difference of the respective at least two results acquired per k-space point. For each essentially only one k-space point shift multiple phase coding gradients are activated in respective spatial directions, followed by a first readout of the essentially only one k-space point for an acquisition of a first of the k-space measurement values. The phase coding gradients are subsequently modified such that a gradient moment for each of the phase coding gradients is zero for a time period from the first readout of the essentially only one k-space point up to a second readout of the essentially only one k-space point. The essentially only one k-space point is subsequently read out a second time.
摘要:
In a method and magnetic resonance system to determine the strength of a magnetic interference field that is caused by an interference object in a magnetic resonance image data acquisition, the interference object having a magnetic susceptibility that differs from the magnetic susceptibility of the material that surrounds the interference object image data acquired with the imaging magnetic resonance measurement that depict an examination subject that contains the interference object are made available in a form that allows the determination of at least one geometric variable of an image artifact in the image data that was caused by the magnetic interference field. The strength of the magnetic interference field that is caused by the interference object is then determined on the basis of the determined geometric variable of the image artifact.