Abstract:
A signal processing system may include a multiply-accumulate (MAC) unit to generate output data by performing multiply-accumulate operations on first and second input data in response to a stream of MAC instruction words, where the MAC unit is pipelined to enable it to perform a multiply-accumulate operation in response to each MAC instruction word. The system may also include an instruction generator to generate the stream of MAC instruction words by performing loop expansion on a stream of intermediate instruction words, where one intermediate instruction word may comprise a group of fields to set up the MAC unit to execute in response to the one intermediate instruction word.
Abstract:
We describe a weighted absolute difference based deinterlace method and apparatus. The deinterlace method and apparatus uses weighted absolute differences along different directions as means for interpolating pixel data using edge orientation detection. The apparatus includes a memory adapted to store a current and previous fields and predetermined portions of a future field of an input signal. A motion detector is adapted to detect motion between the future and previous fields. An interpolating circuit is adapted to generate a plurality of output pixels using a corresponding plurality of methodologies. And a switch is adapted to select between the plurality of output pixels responsive to the motion detector.
Abstract:
We describe a keystone correction system and method. A vertical scalar vertically scales an input image and stores the results to a line buffer. A horizontal scalar retrieves the stored results from the line buffer and horizontally scales the stored results using the relatively small number of lines from the line buffer. The system repeats the vertically scaling, storing, and horizontal scaling until it processes all input image lines.
Abstract:
We describe a weighted absolute difference based deinterlace method and apparatus. The deinterlace method and apparatus uses weighted absolute differences along different directions as means for interpolating pixel data using edge orientation detection. The apparatus includes a memory adapted to store a current and previous fields and predetermined portions of a future field of an input signal. A motion detector is adapted to detect motion between the future and previous fields. An interpolating circuit is adapted to generate a plurality of output pixels using a corresponding plurality of methodologies. And a switch is adapted to select between the plurality of output pixels responsive to the motion detector.