摘要:
A multiple stage formation fracturing operation is conducted with separate radioactive tracer elements injected into the well during each stage of the fracturing operation. After completion of the fracturing operation the well is logged using natural gamma ray logging. The resulting signals are sorted into individual channels or energy bands characteristic of each separate radioactive tracer element. The results of the multiple stage fracturing operation are evaluated based on dispersement of the individual tracer elements.
摘要:
An activation well logging method and apparatus for identifying and measuring the presence of vanadium in earth formations surrounding a borehole. A well logging instrument including a source of neutrons is used to irradiate formations for a period of time sufficient to activate vanadium. The gamma radiation emanating from the irradiated formations are detected by a scintillation detector having output pulses directly proportional to the energies of the incident gamma rays. The output pulses having energies characteristic of the element vanadium are separated and counted to provide indication of any vanadium present in the irradiated formations.
摘要:
A pulsed neutron generator in a well logging instrument is pulsed at a clock frequency of 20 KHz. Inelastic scatter gamma rays are detected during a first time interval coinciding with the neutron source being on and capture gamma rays are measured during a second interval subsequent to the end of each neutron burst. Only a single detected pulse, assuming detection occurs, is transmitted during each of the two detection intervals. Sync pulses are generated in the well logging instrument scaled down to a frequency of 200 Hz for transmission to the earth's surface. At the earth's surface, the scaled-down sync pulses are applied to a phase-locked loop system for regenerating the sync pulses to the same frequency as that of the clock frequency used to pulse the neutron source and to open the detection gates in the borehole instrument. The regenerated sync pulses are used in the surface instrumentation to route the pulses occurring in the inelastic interval into one section of a multichannel analyzer memory and the pulses occuring in the capture interval into another section of the multichannel analyzer. The use of memory address decoders, subtractors and ratio circuits enables both a carbon/oxygen ratio and a silicon/calcium ratio to be struck substantially free of background radiation and substantially unaffected by downscattering of high energy gamma rays.
摘要:
Method of determining the flow velocity of fluid flowing within the borehole of a well, traversing subsurface formations of the earth, with a nonradioactive tracer. A population of neutrons is generated in a stream of fluid so as to engulf a detector capable of detecting neutron capture. A substance of large thermal neutron capture cross section is injected into a stream of fluid a known distance upstream from a detector. Measurement of the elapsed time for the capturing substance to travel a known distance, and, by neutron capture, produce a minimum indication at the detector indicating the presence of said capturing substance at its location of closest proximity to the detector, allows calculation of the velocity of said stream of fluid.
摘要:
A source of high energy neutrons and a detector responsive to the thermal neutron population decay rate are utilized in a well logging instrument. The instrument is positioned within a borehole and at least a portion of the fluids within the borehole are irradiated with high energy neutrons. The thermal neutrons emanating from the irradiated fluids are detected and measured. The thermal neutron counts are converted into a time base measurement which is further converted into a measurement of the thermal neutron capture cross-section for the irradiated fluids.
摘要:
A pulsed neutron generator in a well logging instrument is pulsed at a clock frequency of 20 KHz. Inelastic scatter gamma rays are detected during a first time interval coinciding with the neutron source being on and capture gamma rays are measured during a second interval subsequent to the end of each neutron burst. Only a single detected pulse, assuming detection occurs, is transmitted during each of the two detection intervals. Sync pulses are generated in the well logging instrument scaled down to a frequency of 200 Hz for transmission to the earth's surface. At the earth's surface, the scaled-down sync pulses are applied to a phase-locked loop system for regenerating the sync pulses to the same frequency as that of the clock frequency used to pulse the neutron source and to open the detection gates in the borehole instrument. The regenerated sync pulses are used in the surface instrumentation to route the pulses occurring in the inelastic interval into one section of a multichannel analyzer memory and the pulses occurring in the capture interval into another section of the multichannel analyzer. The use of memory address decoders, subtractors and ratio circuits enables both a carbon/oxygen ratio and a silicon/calcium ratio to be struck, substantially independent of the chlorine content of the borehole and formation.
摘要:
In a neutron induced gamma ray well logging instrument, a neutron generator is pulsed at a preselected clock frequency. Each neutron burst produces inelastic scattering gamma rays and capture gamma rays. Inelastic scattering gamma rays are detected using a bismuth germanate scintillator during a first time interval coinciding with the neutron source being on. Capture gamma rays are detected by bismuth germanate scintillator during a second interval subsequent to the termination of each neutron burst. The detected pulses are converted into electrical pulses by a photomultiplier. The electrical pulses are coupled into processing circuitry. The use of address decoders, subtractors and ratio circuits enables measurements of the characteristic full-energy photopeaks of selected elements within the formations.
摘要:
In a gamma ray well logging instrument, a neutron generator is pulsed at a predetermined rate. Each neutron burst produces gamma radiation resulting from inelastic scattering and neutron capture. The detected gamma radiations are detected by a detector system within the logging instrument. The detected pulses are transmitted to the surface electronics where pulses occurring in the inelastic interval are directed to one section of a multi-channel analyzer and pulses from the capture interval are directed to another section of the analyzer. The use of address decoders and ratio circuits enables an electrical signal to be obtained which represents the ratio of the total capture gamma ray counts within an energy range to the total inelastic gamma ray counts within the same energy range. This electrical signal is representative of the porosity of the subsurface formations being irradiated by neutrons.
摘要:
A method is disclosed for monitoring the flood front movement during enhanced recovery operations wherein flooding fluids are pumped into a number of injection wells forcing residual oil movement toward a production well. A plurality of monitoring wells located between the injection wells and the producing well are logged to establish base logs functionally related to oil saturation and water salinity. Periodically during the water flood operation, the monitoring wells are relogged to detect changes in oil saturation and water salinity. By comparison of the base logs with the series of later derived logs it is possible to accurately monitor the flood front movement including detecting high-permeability zones and monitoring of the flood front profile.
摘要:
In a neutron induced gamma ray well logging instrument, a neutron generator is pulsed at a clock frequency of 20 KHz. Each neutron burst produces inelastic scattering gamma rays which are detected during a first time interval coinciding with the neutron source being on. Capture gamma rays are detected during a second interval subsequent to the end of each neutron burst. Upon detection of the scattered gamma rays, a detection pulse is transmitted during each of the two detection intervals. Sync pulses are generated at a scaled down frequency rate of 200 Hz within the well logging instrument for transmission to the earth's surface. The scaled-down sync pulses are applied to a phase-locked loop system for regenerating the sync pulses to the same frequency as that of the clock frequency used to pulse the neutron source and to open the detection gates in the borehole instrument. The regenerated sync pulses are then used in surface instrumentation to route the pulse occurring during the inelastic scattering interval to one section of a multi-channel analyzer. Similarly, the pulse occurring in the capture interval is routed into another section of the multi-channel analyzer. The use of memory address decoders, subtractors and ratio circuits enables both a carbon/oxygen ratio and a hydrogen/iron ratio to be obtained, substantially independent of chlorine content of the borehole and formation.