Abstract:
A turbine engine for a helicopter, including a gas generator and a free turbine driven in rotation by the gas flow generated by the gas generator is disclosed. The turbine engine further includes a motor/generator coupled to a shaft of the gas generator, to provide a quantity of additional rotational kinetic energy to the shaft during a stage of turbine engine acceleration, or to draw a quantity of rotational kinetic energy from the shaft during a stage of turbine engine deceleration.
Abstract:
A method for calibrating a torsion torquemeter including: placing a torsion torquemeter in a first state; performing first measurements determining first and second angular offsets, and measuring torque output by the power shaft using a reference torquemeter; placing the torsion torquemeter in a second state; performing second measurements determining the first and second angular offsets, and measuring torque output by the power shaft; placing the torquemeter in a third state; performing third measurements determining the first and second angular offsets, and measuring the torque output by the power shaft; placing the torquemeter in a fourth state; performing fourth measurements determining the first and second angular offsets, and measuring the torque output by the power shaft; calibrating the calculation unit based on the first, second, third, and fourth measurements.
Abstract:
A method of starting a turbomachine, performed by an electronic unit, the turbomachine including a gas turbine engine including at least one rotor and a starter to drive the rotor in rotation, the method including: receiving an order to start the turbomachine, and executing in response to receiving the order to start: a primary acceleration during which the starter is operated to increase speed of rotation of the rotor; a thermal homogenization during which the starter is operated to keep the speed of rotation of the rotor constant or to decrease it until a predetermined condition is satisfied; after the predetermined condition is true, a secondary acceleration in which the starter is operated to increase the speed of rotation of the rotor; and an ignition in which ignition of the engine is ordered.
Abstract:
A de-icer device for de-icing an air inlet of a gas turbine, such as a helicopter turbine engine. The de-icer device includes an essentially metallic enclosure for admitting air into the engine, the enclosure including a first opening for admitting air into the enclosure, the first opening including a first essentially metallic grid, the enclosure further including a second opening for directing the air towards a compression stage of the gas turbine. The de-icer device further includes a wave generator for generating electromagnetic waves in the enclosure at a frequency suitable for causing ice to melt.
Abstract:
A de-icer device for de-icing an air inlet of a gas turbine, such as a helicopter turbine engine. The de-icer device includes an essentially metallic enclosure for admitting air into the engine, the enclosure including a first opening for admitting air into the enclosure, the first opening including a first essentially metallic grid, the enclosure further including a second opening for directing the air towards a compression stage of the gas turbine. The de-icer device further includes a wave generator for generating electromagnetic waves in the enclosure at a frequency suitable for causing ice to melt.
Abstract:
A method of starting a turbomachine, performed by an electronic unit, the turbomachine including a gas turbine engine including at least one rotor and a starter to drive the rotor in rotation, the method including: receiving an order to start the turbomachine, and executing in response to receiving the order to start: a primary acceleration during which the starter is operated to increase speed of rotation of the rotor; a thermal homogenization during which the starter is operated to keep the speed of rotation of the rotor constant or to decrease it until a predetermined condition is satisfied; after the predetermined condition is true, a secondary acceleration in which the starter is operated to increase the speed of rotation of the rotor; and an ignition in which ignition of the engine is ordered.
Abstract:
A method for calibrating a torsion torquemeter including: placing a torsion torquemeter in a first state; performing first measurements determining first and second angular offsets, and measuring torque output by the power shaft using a reference torquemeter; placing the torsion torquemeter in a second state; performing second measurements determining the first and second angular offsets, and measuring torque output by the power shaft; placing the torquemeter in a third state; performing third measurements determining the first and second angular offsets, and measuring the torque output by the power shaft; placing the torquemeter in a fourth state; performing fourth measurements determining the first and second angular offsets, and measuring the torque output by the power shaft; calibrating the calculation unit based on the first, second, third, and fourth measurements.
Abstract:
A turbine engine, for example for a helicopter, including a gas generator and a free turbine driven in rotation by the gas flow generated by the gas generator. The turbine engine further includes a motor/generator coupled to a shaft of the gas generator, to provide a quantity of additional rotational kinetic energy to the shaft during a stage of turbine engine acceleration, or to draw a quantity of rotational kinetic energy from the shaft during a stage of turbine engine deceleration.