Abstract:
An improved process for treating an electrically conductive surface of a workpiece by cleaning or coating the surface is provided, comprising the steps of deploying the electrically conducting surface of the workpiece to form a cathode in an electrolytic cell; establishing a DC voltage between the cathode and an anode; forming a working gap between the anode and the cathode, and establishing a seal around the working gap to form a sealed treatment zone; delivering into the working gap an electrically conductive medium selected from the group consisting of: (A) an aqueous electrolyte from which a foam is created; (B) a foam; and a mixture of components (A) and (B), so that electrically conductive medium consisting of a foam comprising a gas/vapor phase and a liquid phase fills the working gap, wherein said electrically conductive medium enters the electrolytic cell through tubes having discharge ends oriented at approximately ten degrees from parallel to the workpiece, and wherein turbulence is created within the electrolytic cell; adjusting the operating parameters so that an electro-plasma discharge is created between the cathode and positive ions in the electrically conductive medium which are concentrated near the electrically conducting surface of the workpiece, thereby causing micro-zonal melting of the surface; and removing foam from the working gap.
Abstract:
An improved process for treating an electrically conductive surface of a workpiece by cleaning or coating the surface is provided, comprising the steps of deploying the electrically conducting surface of the workpiece to form a cathode in an electrolytic cell; establishing a DC voltage between the cathode and an anode; forming a working gap between the anode and the cathode, and establishing a seal around the working gap to form a sealed treatment zone; delivering into the working gap an electrically conductive medium selected from the group consisting of: (A) an aqueous electrolyte from which a foam is created; (B) a foam; and a mixture of components (A) and (B), so that electrically conductive medium consisting of a foam comprising a gas/vapor phase and a liquid phase fills the working gap, wherein said electrically conductive medium enters the electrolytic cell through tubes having discharge ends oriented at approximately ten degrees from parallel to the workpiece, and wherein turbulence is created within the electrolytic cell; adjusting the operating parameters so that an electro-plasma discharge is created between the cathode and positive ions in the electrically conductive medium which are concentrated near the electrically conducting surface of the workpiece, thereby causing micro-zonal melting of the surface; and removing foam from the working gap.
Abstract:
A process for the treatment and/or removal from Condenser of contaminants from a waste water, waste stream, industrial or municipal sludge, metals, oils, organics and other materials consider to be harmful to the environment are removed from the feed stock; in the case of non-metals, mineralized and in the case of metals, plated to the cathode. The present invention provides an apparatus and methods which overcome some of the problems associated with the treatment of wastewater and sludge and offers a new, novel approach to the treatment of waste, by employing the use of electroplasma processing which utilizes aspects of ultraviolet blue light, thermal energy, cavitation, flocculation, aeration, and electrical energy. The ability to control flow rates, energy density, cavitation density, aeration density and heat generation within the system offers a new level of control over different materials for treatment of waste, contaminants or metals within the same process and apparatus.