Abstract:
A laser excited thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. A grid having a small negative potential traps the electron flow and the mass of electrons is then exposed to a laser pulse discharge and at the same time the potential on the grid is removed to permit a bolus of electrons to flow therethrough. The electron bolus is electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently is collected on the other end wall of the chamber functioning as a collecting plate. The EMF generated in the induction coil by action of the transiting electron bolus interacting with the transverse magnetic field is applied to an external circuit to perform work.
Abstract:
A collector element for a thermionic electric converter that reduces electron scatter and improves conversion efficiency is provided. The collector element includes an outer casing and a highly charged member surrounded by insulating layers that minimize loss of static charge on the highly charged member. The collector element additionally includes a conductive layer of copper sulfate gel impregnated with copper wool fibers. Copper sulfate gel minimizes electron scatter, while providing advantageous electrical properties. The copper wool fibers are in electrical contact with a plurality of ancillary buses which transmit electrical energy to a main bus that provides the electrical energy collected to an external circuit. The main bus is also in electrical contact with the conductive layer.
Abstract:
A thermionic electric converter is disclosed wherein an externally located heat source causes electrons to be boiled off an electron emissive surface interiorly positioned on one end wall of an evacuated cylindrical chamber. The electrons are electrically focused and accelerated through the interior of an air core induction coil located within a transverse magnetic field, and subsequently are collected on the other end wall of the chamber functioning as a collecting plate. The EMF generated in the induction coil by action of the transiting electron stream interacting with the transverse magnetic field is applied to an external circuit to perform work, thereby implementing a direct heat energy to electrical energy conversion.
Abstract:
A thermionic electric converter includes a cathode output enhancing laser (374) operable to direct a laser beam (376) to strike an emissive surface of a cathode emitter (321), to increase the electron output of the cathode emitter (321). The cathode output enhancing lase (374) is positioned to direct a laser beam (375) through an opening (370) in the anode (306) or target structure, in the direction of the cathode emitter (321). An electron repulsion ring (380) is provided at an edge of the opening (370) in the anode (306), to reduce the number of electrons missing the anode (306) and passing through the opening (370) in the anode (306).
Abstract:
An improved thermionic electric converter uses a wire grid cathode to provide a larger surface area for electrons to boil off. Alternately or additionally, the larger electron emission surface area can be achieved by using a curved electron emission surface. A laser provides quantum interference to electrons just before they reach the anode, thereby lowering their energy levels such that they more readily are captured by the anode. The arrangement provides improved conversion efficiency and reduced electron scatter.
Abstract:
An improved thermionic electric converter uses a wire grid cathode to provide a larger surface area for electrons to boil off. Alternately or additionally, the larger electron emission surface area can be achieved by using a curved electron emission surface. A laser provides quantum interference to electrons just before they reach the anode, thereby lowering their energy levels such that they more readily are captured by the anode. The arrangement provides improved conversion efficiency and reduced electron scatter.