Abstract:
Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
Abstract:
Methods and apparatus for forming non-woven fiber mats from polymers and monomers that are traditionally difficult to use for fiber formation are shown and described. Applicable techniques include electrospinning and other traditional fiber formation methods. Suitable polymers and monomers include those having low molecular weight, a low melting point, and/or a low glass transition temperature.
Abstract:
A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.