Abstract:
In an airbag system, an airbag obtained by closing each of opposite end portions of a folded metal tube with an end cap is attached to an attachment surface of a front pillar, and the airbag is deployed along the front pillar with a gas produced by an inflator. Therefore, a pedestrian who collides with the front pillar can be protected by the airbag. Since the portion of the airbag, which is away from the end cap toward an intermediate part of the airbag in a longitudinal direction of the airbag by a predetermined distance, is connected to the attachment surface, which is located outside the end cap in the longitudinal direction of the airbag, with a stay being interposed in between, the difficulty in an inflation in a part of the airbag in the vicinity of each end cap, due to the end cap being pressed against the attachment surface when the airbag is inflating, is prevented. Accordingly, the airbag is allowed to inflate uniformly throughout the entire length of the airbag, and the intermediate part of the airbag in the longitudinal direction of the airbag is prevented from bending in a way that the intermediate part thereof moves away from the attachment surface of the front pillar; thus, a portion of the airbag which is located inward in the bending direction is prevented from being buckled. Accordingly, the deployed shape of the airbag can be stabilized, and thus the shock absorbing capability of the airbag is enhanced.
Abstract:
Opposite end portions of an airbag made of a folded metal plate and formed into a tubular shape are capped by respective end caps and are attached to an attachment surface of a front pillar, and the airbag is deployed along the front pillar by use of gas produced by an inflator, thereby protecting by the airbag a pedestrian that collides with the front pillar. Bolts penetrating through long holes formed in the end portions of the airbag and bolt holes of the end caps are screwed to weld nuts, and thereby the end portions of the airbag are slidably supported by the end caps. Accordingly, when the airbag is deployed the long holes slide with respect to the respective bolts toward inside in a longitudinal direction of the airbag, and a tension in the longitudinal direction of the airbag is prevented from acting on a metal plate of the airbag, thereby enabling the airbag to be deployed reliably near the end caps. Therefore, it is possible to inflate the airbag evenly along its entire length and thereby enhancing the shock absorbing performance when a pedestrian collides.
Abstract:
A composite structure includes a first portion comprising a first metallic material, a monolayer of particles extending into and bonded with the first portion, and a second portion comprising a second material, the second portion bonded with the monolayer of particles and extending into interstices between the particles. A method for fabricating a composite structure includes bonding a monolayer of particles to a first portion comprising a first metallic material, such that the monolayer of particles extends into the first portion and bonding a second portion comprising a second material to the monolayer of particles, such that the second portion extends into interstices between the particles.
Abstract:
In an airbag system, an airbag obtained by closing each of opposite end portions of a folded metal tube with an end cap is attached to an attachment surface of a front pillar, and the airbag is deployed along the front pillar with a gas produced by an inflator. Therefore, a pedestrian who collides with the front pillar can be protected by the airbag. Since the portion of the airbag, which is away from the end cap toward an intermediate part of the airbag in a longitudinal direction of the airbag by a predetermined distance, is connected to the attachment surface, which is located outside the end cap in the longitudinal direction of the airbag, with a stay being interposed in between, the difficulty in an inflation in a part of the airbag in the vicinity of each end cap, due to the end cap being pressed against the attachment surface when the airbag is inflating, is prevented. Accordingly, the airbag is allowed to inflate uniformly throughout the entire length of the airbag, and the intermediate part of the airbag in the longitudinal direction of the airbag is prevented from bending in a way that the intermediate part thereof moves away from the attachment surface of the front pillar; thus, a portion of the airbag which is located inward in the bending direction is prevented from being buckled. Accordingly, the deployed shape of the airbag can be stabilized, and thus the shock absorbing capability of the airbag is enhanced.
Abstract:
A retention tab unit is disclosed comprising a retention tab configured for attaching an inflatable curtain to a vehicle. The retention tab unit has an energy absorption mechanism that facilitates confinement of the retention tab in an initial configuration wherein the retention tab is not taut. Once the inflatable curtain is deployed, the energy absorption mechanism is configured to release the retention tab from its initial configuration and allow it to be forced into a deployed configuration wherein the retention tab tautly extends from the vehicle.