摘要:
The present invention is related to the field of environmental protection, more specifically, to a foliage silicon fertilizer and a method for production of the fertilizer, which is a molybdenum-silica compound sol used for reducing heavy metal and nitrates in vegetables. The fertilizer, which is a molybdenum-silica compound sol, comprises 10-25 wt % silica, 0.05-5.5 wt % molybdenum ions. More preferably, the fertilize, which is a rare earth-molybdenum-silica compound sol, comprises 10-25 wt % silica, 0.05-5.5 wt % molybdenum ions and 0.1-7.5 wt % rare earth ions. By the combination of silica with molybdenum in the present invention, it is effective for preventing the absorption/accumulation of nitrates in vegetables. In addition, by the further combination with rare earth element, the prevention ability of the fertilizer from absorbing heavy metal and nitrates into vegetables is even enhanced. With a preparation method with normal pressure and relatively, low temperature, that is, with mild condition, simple process and high operability, large scale production of the present invention may be readily executed.
摘要:
A method for producing high-active titanium dioxide anatase hydrosol by using metatitanate as precursor, is characterized in comprising the following steps in order: (1) Wash process: adding alkali to wash so as to remove sulfate ion; (2) Dispersion process: adding acid to disperse the filter cake and obtaining a uniform suspension; (3) Peptization process: peptizing the suspension obtained in dispersion process according to the method of (a), (b) or (c). When producing transition metal or rare earth doped anatase hydrosol, transition metal or rare earth salt solution with a predetermined concentration is first prepared, and then added into the metatitanate suspension which has not been washed by alkali. Subsequently, the resulting suspension is filtered and washed until no sulfate ion is present. When producing precious metal deposited anatase hydrosol, precious metal solution is added into prepared pure anatase hydrosol, and then, the resulting solution is irradiated with ultraviolet light for 0.5-10 hours under stirring continuously. The advantages and beneficial effects of the present invention are as follows: (1) the raw material has low price and little pollution as well as abundant source; (2) the hydrosol has excellent degree of dispersibility and higher anatase crystallization; (3) the hydrosol has higher activity under visible light irradiation owing to doping/depositing technique; (4) the properties and activity of the hydrosol can be further enhanced by using post disposal, such as microwave and ultrasonic technique; and (5) the hydrosol is a kind of nano-material with about 10 nm particle size. The anatase hydrosol can be applied for indoor air purification, crop disease control, odor control and so on.
摘要:
The present invention is related to the field of environmental protection, more specifically, to a foliage silicon fertilizer and a method for production of the fertilizer, which is a molybdenum-silica compound sol used for reducing heavy metal and nitrates in vegetables. The fertilizer, which is a molybdenum-silica compound sol, comprises 10-25 wt % silica, 0.05-5.5 wt % molybdenum ions. More preferably, the fertilize, which is a rare earth-molybdenum-silica compound sol, comprises 10-25 wt % silica, 0.05-5.5 wt % molybdenum ions and 0.1-7.5 wt % rare earth ions. By the combination of silica with molybdenum in the present invention, it is effective for preventing the absorption/accumulation of nitrates in vegetables. In addition, by the further combination with rare earth element, the prevention ability of the fertilizer from absorbing heavy metal and nitrates into vegetables is even enhanced. With a preparation method with normal pressure and relatively, low temperature, that is, with mild condition, simple process and high operability, large scale production of the present invention may be readily executed.
摘要:
A method for producing high-active titanium dioxide anatase hydrosol by using metatitanate as precursor, is characterized in comprising the following steps in order: (1) Wash process: adding alkali to wash so as to remove sulfate ion; (2) Dispersion process: adding acid to disperse the filter cake and obtaining a uniform suspension; (3) Peptization process: peptizing the suspension obtained in dispersion process according to the method of (a), (b) or (c). When producing transition metal or rare earth doped anatase hydrosol, transition metal or rare earth salt solution with a predetermined concentration is first prepared, and then added into the metatitanate suspension which has not been washed by alkali. Subsequently, the resulting suspension is filtered and washed until no sulfate ion is present. When producing precious metal deposited anatase hydrosol, precious metal solution is added into prepared pure anatase hydrosol, and then, the resulting solution is irradiated with ultraviolet light for 0.5-10 hours under stirring continuously. The advantages and beneficial effects of the present invention are as follows: (1) the raw material has low price and little pollution as well as abundant source; (2) the hydrosol has excellent degree of dispersibility and higher anatase crystallization; (3) the hydrosol has higher activity under visible light irradiation owing to doping/depositing technique; (4) the properties and activity of the hydrosol can be further enhanced by using post disposal, such as microwave and ultrasonic technique; and (5) the hydrosol is a kind of nano-material with about 10 nm particle size. The anatase hydrosol can be applied for indoor air purification, crop disease control, odor control and so on.