摘要:
High-pressure water jet cutting techniques generate numerous handling problems both for the plates being cut and for cut parts. These problems can be resolved by the device according to the disclosed embodiments. This device includes a plurality of wires held under stress at a predetermined stress level above a plate being cut. These wires intercept a jet cutting the plate. This interception results in the creation of a micro-fastener holding the cut part to the plate. This micro-fastener can be easily broken. The plurality of wires also prevents the boiling effect of water in a cutting pool, this boiling resulting from the impact of the water jet in the pool.
摘要:
High-pressure water jet cutting techniques generate numerous handling problems both for the plates being cut and for cut parts. These problems can be resolved by the device according to the disclosed embodiments. This device includes a plurality of wires held under stress at a predetermined stress level above a plate being cut. These wires intercept a jet cutting the plate. This interception results in the creation of a micro-fastener holding the cut part to the plate. This micro-fastener can be easily broken. The plurality of wires also prevents the boiling effect of water in a cutting pool, this boiling resulting from the impact of the water jet in the pool.
摘要:
A joggled structural element includes two wings with a small thickness and a great thickness. Slopes made in a joggle of the structural element are computed as a function of each of the thicknesses of the wings. Thus, the joggled structural element comprises a shallow slope in the joggle on the side having the wing of great thickness and a steep slope in the joggle on the side having the wing of small thickness. A method is also disclosed implementing an anvil and a punch. This method can be used to make joggled structural elements.
摘要:
A joggled structural element includes two wings with a small thickness and a great thickness. Slopes made in a joggle of the structural element are computed as a function of each of the thicknesses of the wings. Thus, the joggled structural element comprises a shallow slope in the joggle on the side having the wing of great thickness and a steep slope in the joggle on the side having the wing of small thickness. A method is also disclosed implementing an anvil and a punch. This method can be used to make joggled structural elements.