Abstract:
To perform a marine survey of a subterranean structure, a vertically oriented electromagnetic (EM) source is positioned in a body of water, where the EM source is coincident with an EM receiver. The EM source is activated to cause transmission of EM energy into the subterranean structure. After deactivation of the EM source, an EM field affected by the subterranean structure is measured by the EM receiver. In an alternative implementation, a survey system is provided that has a continuous wave EM source, a main EM receiver, and an auxiliary EM receiver.
Abstract:
To determine effect on a magnetic field caused by a lining structure in a wellbore, an array may be deployed into the wellbore lined with the lining structure. The array comprises a plurality of sensors including sensor A configured to operate as a transmitter, sensor B configured to operate as either a transmitter or a receiver, and sensor C configured to operate as a receiver. The array measures magnetic fields using sensor B as a receiver and sensor C in response to activation of sensor B as a transmitter and sensor A. A plurality of lining structure correction factors can be calculated based on the measured magnetic fields, based on the reciprocity of the sensors.
Abstract:
A technique includes performing first electromagnetic field measurements to obtain a first set of data and performing second electromagnetic field measurements to obtain a second set of data. The first set of data is relatively sensitive to an effect caused by an air layer boundary and is relatively insensitive to the presence of a resistive body. The second set of data is relatively insensitive to the effect and is relatively sensitive to the presence of the resistive body. The technique includes combining the first and second sets of data to generate a third set of data, which is relatively insensitive to the effect and is relatively sensitive to the presence of the resistive body.
Abstract:
Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, borehole-to-surface, and single-well (borehole-to-borehole) measurements by which the effects of steel casing are reduced.
Abstract:
A method and apparatus are provided for cooling fluids entering a closed circuit cooling tower. A triple circuit assembly is used to cool the fluid in the closed loop. The triple circuit assembly design allows a heat transfer tube bundle to maintain a relatively low pressure drop, but without simultaneously lowering thermal performance to a significant degree as compared to traditional double serpentine or QUAD serpentine designs.
Abstract:
The present disclosure relates to determining attenuation factors relating to an electromagnetic signal passing through, a conductive material seen by a real sensor. A sensor is provided and disposed proximate to the material. An alternating current is passed through the sensor and the impedance of the sensor is measured. The impedance of an ideal coil is obtained from the measured impedance using electromagnetic modeling combined with a circuit analysis of the coil impedance, and the attenuation factors for the real coil in straight or feedback mode are determined by electromagnetic modeling of casing attenuation factors and impedance of an ideal coil combined with equivalent circuit modeling of the sensor transfer functions. The attenuation factors seen by the real sensor may be determined in real-time or post-survey. The material may be magnetic or non-magnetic.
Abstract:
Impedances of an electromagnetic (EM) coil positioned in a well lined with an electrically conductive liner are determined. The impedances correspond to plural frequencies of operation of the EM coil. Based on the impedances of the EM coil corresponding to the plural frequencies, an attenuation factor associated with the electrically conductive liner is determined.
Abstract:
Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, borehole-to-surface, and single-well (borehole-to-borehole) measurements measurements by which the effects of steel casing are reduced.
Abstract:
Methods and systems are provided to determine a property of an earth formation, comprising a mobile transmitter disposed at a predetermined elevated height above a surface of the earth formation, and one or more receivers moveably disposed in a wellbore penetrating the earth formation. Electromagnetic energy is transmitted from the mobile transmitter into the formation from a plurality of locations; and at the one or more receivers a signal is measured. Using the signal received by the one or more receivers, a property of the formation, such as resistivity, can be determined and mapped.
Abstract:
Characterizing a reservoir with electromagnetic imaging surveys includes normalizing measured voltage data by transmitter moment, sorting the normalized voltage data into common receiver profiles, densely resampling transmitter locations using common positions for the receiver profiles, coarsely resampling the data at discreet transmitter locations, defining a starting model for inversion, weighting the data by a factor, converting the normalized voltage data to ratios, calculating a conductivity image using a ratio inversion method, and verifying that an inversion has converged and the image is geologically reasonable. The image can then be displayed. The invention can be used for cross-well, surface-to-borehole, and borehole-to-surface measurements by which the effects of steel casing are reduced.