摘要:
There can be problems with the security of social networking communications. For example, there may be occasions when a number of friends wish to communicate securely through a social network infrastructure, such that non-trusted 3rd-party entities, such as a Social Network Operator or host that provides the application infrastructure, does not overhear the communication. In response to the above problems, embodiments presented propose a set of innovative, lightweight solutions, considering that in certain scenarios the Social Network Operator may not be a trusted entity. Embodiments of the present invention are directed to methods and apparatuses for secure information sharing in social networks using random keys.
摘要:
A communication network includes an overload control algorithm that adapts to changing circumstances. In a disclosed example, an acceptance fraction for each of a plurality of message types depends upon the arrival rates of the message types. As at least one of the arrival rates changes, the acceptance fraction is responsively changed to provide an overload control algorithm that adapts to changes in message traffic.
摘要:
Methods are provided for securely transmitting a packet between endpoints of a network. In one aspect, there is provided a method for establishing an end-to-end key using extant hop-by-hop security associations. In a second aspect, there is provided a method in which a packet-specific encryption key PEK is used to encrypt a packet p. A signature of the key PEK is independently computed at each of two nodes, using an integrity key shared by the two nodes. The signature is sent from one of the two nodes to the other in association with the packet p. The receiving node uses the signature to verify that the packet p was originated by an entity having possession of the PEK.
摘要:
A key distribution scheme is provided, which is useful for establishing, distributing, and maintaining security associations in a Mobile IP network. An authentication server performs an initial validation of a new session and generates a root key which it delivers to the initial access gateway and to the home agent. The initial access gateway and the home agent each independently compute a derivative key available only to themselves. The initial access gateway, acting as proxy for the mobile station, uses the derivative key to sign the Mobile IP registration or binding update transactions, and sends the signed registration or binding update to the home agent for validation. Once the session is established between the mobile station and the home agent, the access gateways act as proxies on behalf of the mobile station to maintain the session mobility. In handoff, the new access gateway acquires the root key as part of the transferred session context. The new access gateway, acting as proxy for the mobile station, computes a new derivative key from the root key and uses it to sign a binding update.
摘要:
A key distribution scheme is provided, which is useful for establishing, distributing, and maintaining security associations in a Mobile IP network. An authentication server performs an initial validation of a new session and generates a root key which it delivers to the initial access gateway and to the home agent. The initial access gateway and the home agent each independently compute a derivative key available only to themselves. The initial access gateway, acting as proxy for the mobile station, uses the derivative key to sign the Mobile IP registration or binding update transactions, and sends the signed registration or binding update to the home agent for validation. Once the session is established between the mobile station and the home agent, the access gateways act as proxies on behalf of the mobile station to maintain the session mobility. In handoff, the new access gateway acquires the root key as part of the transferred session context. The new access gateway, acting as proxy for the mobile station, computes a new derivative key from the root key and uses it to sign a binding update.
摘要:
Methods are provided for securely transmitting a packet between endpoints of a network. In one aspect, there is provided a method for establishing an end-to-end key using extant hop-by-hop security associations. In a second aspect, there is provided a method in which a packet-specific encryption key PEK is used to encrypt a packet p. A signature of the key PEK is independently computed at each of two nodes, using an integrity key shared by the two nodes. The signature is sent from one of the two nodes to the other in association with the packet p. The receiving node uses the signature to verify that the packet p was originated by an entity having possession of the PEK.
摘要:
A hash function is applied to a prefix of a VIL input. The output is added to a suffix of the input. A block cipher is applied to results of the addition. An encryption function is performed on the prefix. The final output is the output of the block cipher and the encryption function. In a second encryption technique, a hash function is applied to an input, and the output of the hash function has first and second portions. A block cipher is applied to the second portion. The output of the block cipher is added to the first portion, and a second function is applied to the result of this first addition. The output of the second function is added to the second portion. An inverse hash function is then applied to the output of the first and second additions, creating an encrypted output.
摘要:
In a method of block coding, each character of the codeword may be thought of as a sum of characters of the message word, computed such that each message-word character that contributes to the sum is weighted by a respective weight coefficient. In the method described here, the weight coefficients are derived from a division polynomial of an elliptic curve.
摘要:
Data rate determination is provided in a system where the available power fraction and available Walsh codes in each active leg are dynamically changing over time. This method adapts the rate (modulation and coding) based on the combined resource (power & code space) levels seen at each cell. The method results in maximization of the rate supportable by each cell given their resource constrained situation while meeting the constraints of target packet or frame error rate and orthogonality. Furthermore, improved fast cell selection by the mobile results due to this approach that is based on knowledge of combined resource (power & code space) levels across the cells in the active set.
摘要:
Efficient data communication in wireless communication system is provided by using centralized control of data communications, such as packet switched services, over the uplink channel (mobile station (MS) to base station (BS)). A multiple access protocol is used where packet data mobile stations make requests for uplink channel resources. The request messages transmitted by the MSs inform the BS of service parameters. Examples of such service parameters are available transmit power at the MS, the amount of data to transmit and Quality of Service (QoS). The BS then processes the received request messages and performs interference management calculations to determine the portion of the BS's receive power budget that can be allocated to the data user requesting service. These calculations are used to control the amount of interference seen at the base station, to assign a data rate to the user and to aid scheduling algorithms in computing service order priorities. Any scheduling algorithm may be used; for example, scheduling may be based on the amount of data to be transmitted, the age of the data or the service priority associated with the mobile station. The interference control is used to prevent the occurrence of catastrophic levels of interference while maximizing the utilization of resources on the uplink.