摘要:
A single ended forward DC-to-DC converter includes a transformer having a primary winding electrically connected to a primary switch and a secondary winding electrically connected to a secondary switch and a clamping capacitor. The clamping capacitor stores the magnetization energy from the secondary winding when the primary switch is turned off, thus causing the transformer core to be reset during the period that the primary switch remains off. The converter can use mosfets as the primary and secondary switches, such that a change in the voltage at the secondary winding of the transformer, due to the turning off of the primary switch, results in an automatic turning on of the secondary switch. The combination of the clamping capacitor and the mosfet switches increases the simplicity of the DC-to-DC converter while eliminating undesirable characteristics such as dead time and voltage stresses on the switches. The DC-to-DC converter of the present invention can be used to carry out synchronous rectification and zero voltage switching.
摘要:
A single ended forward DC-to-DC converter includes a transformer having a primary winding electrically connected to a primary switch and a secondary winding electrically connected to a secondary switch and a clamping capacitor. The clamping capacitor stores the magnetization energy from the secondary winding when the primary switch is turned off, thus causing the transformer core to be reset during the period that the primary switch remains off. The converter can use mosfets as the primary and secondary switches, such that a change in the voltage at the secondary winding of the transformer, due to the turning off of the primary switch, results in an automatic turning on of the secondary switch. The combination of the clamping capacitor and the mosfet switches increases the simplicity of the DC-to-DC converter while eliminating undesirable characteristics such as dead time and voltage stresses on the switches. The DC-to-DC converter of the present invention can be used to carry out synchronous rectification and zero voltage switching.
摘要:
An electrostatic precipitator cell containing a collection assembly, a plurality of collection assembly ground plates disposed in the collection assembly, a plurality of banks disposed in the collection assembly, wherein each bank containing a collection assembly charge plate and a voltage isolator is described. Electrically isolating portions of an electrostatic precipitator cell results in reduced arcing and overall increases in cleaning efficiency. As air cleaner utilizing the electrostatic precipitator with isolated banks is also described.
摘要:
A single ended forward DC-to-DC converter includes a transformer having a primary winding electrically connected to a primary switch and a secondary winding electrically connected to a secondary switch and a clamping capacitor. The clamping capacitor stores the magnetization energy from the secondary winding when the primary switch is turned off, thus causing the transformer core to be reset during the period that the primary switch remains off. The converter can use mosfets as the primary and secondary switches, such that a change in the voltage at the secondary winding of the transformer, due to the turning off of the primary switch, results in an automatic turning on of the secondary switch. The combination of the clamping capacitor and the mosfet switches increases the simplicity of the DC-to-DC converter while eliminating undesirable characteristics such as dead time and voltage stresses on the switches. The DC-to-DC converter of the present invention can be used to carry out synchronous rectification and zero voltage switching.
摘要:
A single ended forward DC-to-DC converter includes a transformer having a. primary winding electrically connected to a primary switch and a secondary winding electrically connected to a secondary switch and a clamping capacitor. The clamping capacitor stores the magnetization energy from the secondary winding when the primary switch is turned off, thus causing the transformer core to be reset during the period that the primary switch remains off. The converter can use mosfets as the primary and secondary switches, such that a change in the voltage at the secondary winding of the transformer, due to the turning off of the primary switch, results in an automatic turning on of the secondary switch. The combination of the clamping capacitor and the mosfet switches increases the simplicity of the DC-to-DC converter while eliminating undesirable characteristics such as dead time and voltage stresses on the switches. The DC-to-DC converter of the present invention can be used to carry out synchronous rectification and zero voltage switching.
摘要:
A synchronous rectification circuit for a DC-DC power converter can operate efficiently with a primary drive voltage that remains at a zero voltage level during a portion of the power conduction cycle. The DC-DC power converter includes a primary side power circuit providing a symmetrically varying power signal that remains at a zero voltage level for a portion of a conduction cycle. A first secondary side power circuit is inductively coupled to the primary side power circuit, and has an output terminal that provides an output voltage. The first secondary side power circuit further comprises first and second synchronous rectifiers having respective activation terminals. The synchronous rectifiers are adapted to alternately activate in synchronism with non-zero voltage level portions of the conduction cycle. A second secondary side power circuit is inductively coupled to the first secondary side power circuit and has polarity reversed with respect to the first secondary side power circuit. The second secondary side power circuit comprises first and second switching devices having respective activation terminals respectively coupled to the activation terminals of the first and second synchronous rectifiers. The first and second switching devices are adapted to alternately activate in inverse synchronism with the non-zero voltage level portions of the conduction cycle. The first and second synchronous rectifiers are selected to have lower activation voltage thresholds than the first and second switching devices such that both the first and second synchronous rectifiers remains activated during a successive zero voltage level portion of the conduction cycle.
摘要:
A single ended forward DC-to-DC converter includes a transformer having a primary winding electrically connected to a primary switch and a secondary winding electrically connected to a secondary switch and a clamping capacitor. The clamping capacitor stores the magnetization energy from the secondary winding when the primary switch is turned off, thus causing the transformer core to be reset during the period that the primary switch remains off. The converter can use mosfets as the primary and secondary switches, such that a change in the voltage at the secondary winding of the transformer, due to the turning off of the primary switch, results in an automatic turning on of the secondary switch. The combination of the clamping capacitor and the mosfet switches increases the simplicity of the DC-to-DC converter while eliminating undesirable characteristics such as dead time and voltage stresses on the switches. The DC-to-DC converter of the present invention can be used to carry out synchronous rectification and zero voltage switching.