Abstract:
Time course MRI data is acquired from the hippocampal region of the brain and processed to produce two indices that are a measure of the functional connectivity between locations therein. The MRI data is acquired while the brain is substantially at rest and the spontaneous low frequency component of the time course data at each location in the hippocampus is extracted and compared in a cross-correlation process. Also acquired is fMRI data which indicates those locations in the brain that should be included in the index calculations.
Abstract:
A magnetic resonance imaging apparatus that carries out a pulse sequence for making a signal of a first substance within an object smaller than a signal of a second substance within the object. The pulse sequence includes an α°-pulse for exciting the object, a refocus pulse for refocusing a phase of spin within a region excited by the α°-pulse, and a readout gradient field for acquiring a magnetic resonance signal from the region. The α°-pulse has a spectral selectivity such that a transverse magnetization of the first substance is made smaller than a transverse magnetization of the second substance. The refocus pulse has a spectral selectivity such that a phase of spin of the second substance is refocused and refocusing of a phase of spin of the first substance is suppressed.
Abstract:
Time course MRI data is acquired from the hippocampal region of the brain and processed to produce two indices that are a measure of the functional connectivity between locations therein. The MRI data is acquired while the brain is substantially at rest and the spontaneous low frequency component of the time course data at each location in the hippocampus is extracted and compared in a cross-correlation process. Also acquired is fMRI data which indicates those locations in the brain that should be included in the index calculations.