Abstract:
The present invention provides an improved method for estimating range of objects in images from various distances comprising receiving a set of images of the scene having multiple objects from at least one camera in motion. Due to the motion of the camera, each of the images are obtained at different camera locations. Then an object visible in multiple images is selected. Data related to approximate camera positions and orientations and the images of the visible object are used to estimate the location of the object relative to a reference coordinate system. Based on the computed data, a projected location of the visible object is computed and the orientation angle of the camera for each image is refined. Additionally, pairs of cameras with various locations can obtain dense stereo for regions of the image at various ranges.
Abstract:
The present invention provides an improved method for estimating range of objects in images from various distances comprising receiving a set of images of the scene having multiple objects from at least one camera in motion. Due to the motion of the camera, each of the images are obtained at different camera locations. Then an object visible in multiple images is selected. Data related to approximate camera positions and orientations and the images of the visible object are used to estimate the location of the object relative to a reference coordinate system. Based on the computed data, a projected location of the visible object is computed and the orientation angle of the camera for each image is refined. Additionally, pairs of cameras with various locations can obtain dense stereo for regions of the image at various ranges.
Abstract:
A method for detecting a moving target is disclosed that receives a plurality of images from at least one camera; receives a measurement of scale from one of a measurement device and a second camera; calculates the pose of the at least one camera over time based on the plurality of images and the measurement of scale; selects a reference image and an inspection image from the plurality of images of the at least one camera; and detects a moving target from the reference image and the inspection image based on the orientation of corresponding portions in the reference image and the inspection image relative to a location of an epipolar direction common to the reference image and the inspection image; and displays any detected moving target on a display. The measurement of scale can derived from a second camera or, for example, a wheel odometer. The method can also detect moving targets by combining the above epipolar method with a method based on changes in depth between the inspection image and the reference image and based on changes in flow between the inspection image and the reference image.
Abstract:
The present invention relates to a system and method for detecting one or more targets belonging to a first class (e.g., moving and/or stationary people), from a moving platform in a 3D-rich environment. The framework described here is implemented using a number of monocular or stereo cameras distributed around the vehicle to provide 360 degrees coverage. Furthermore, the framework described here utilizes numerous filters to reduce the number of false positive identifications of the targets.
Abstract:
The present invention provides an improved system and method for estimating range of the objects in the images from various distances. The method comprises receiving a set of images of the scene having multiple objects from at least one camera in motion. Due to the motion of the camera, each of the images are obtained at different camera locations Then an object visible in multiple images is selected. Data related to approximate camera positions and orientations and the images of the visible object are used to estimate the location of the object relative to a reference coordinate system. Based on the computed data, a projected location of the visible object is computed and the orientation angle of the camera for each image is refined. Additionally, pairs of cameras with various locations can then be chosen to obtain dense stereo for regions of the image at various ranges. The process is further structured so that as new images arrive, they are incorporated into the pose adjustment so that the dense stereo results can be updated.
Abstract:
A method for detecting a moving target is disclosed that receives a plurality of images from at least one camera; receives a measurement of scale from one of a measurement device and a second camera; calculates the pose of the at least one camera over time based on the plurality of images and the measurement of scale; selects a reference image and an inspection image from the plurality of images of the at least one camera; and detects a moving target from the reference image and the inspection image based on the orientation of corresponding portions in the reference image and the inspection image relative to a location of an epipolar direction common to the reference image and the inspection image; and displays any detected moving target on a display. The measurement of scale can derived from a second camera or, for example, a wheel odometer. The method can also detect moving targets by combining the above epipolar method with a method based on changes in depth between the inspection image and the reference image and based on changes in flow between the inspection image and the reference image.
Abstract:
A system that estimates both the ego-motion of a camera through a scene and the structure of the scene by analyzing a batch of images of the scene obtained by the camera employs a correlation-based, iterative, multi-resolution algorithm. The system defines a global ego-motion constraint to refine estimates of inter-frame camera rotation and translation. It also uses local window-based correlation to refine the current estimate of scene structure. The batch of images is divided into a reference image and a group of inspection images. Each inspection image in the batch of images is aligned to the reference image by a warping transformation. The correlation is determined by analyzing respective Gaussian/Laplacian decompositions of the reference image and warped inspection images. The ego-motion constraint includes both rotation and translation parameters. These parameters are determined by globally correlating surfaces in the respective inspection images to the reference image. Scene structure is determined on a pixel-by-pixel basis by correlating multiple pixels in a support region among all of the images. The correlation surfaces are modeled as quadratic or other parametric surfaces to allow easy recognition and rejection of outliers and to simplify computation of incremental refinements for ego-motion and structure. The system can employ information from other sensors to provide an initial estimate of ego-motion and/or scene structure. The system operates using images captured by either single-camera rigs or multiple-camera rigs.
Abstract:
The present invention relates to a system and method for detecting one or more targets belonging to a first class (e.g., moving and/or stationary people), from a moving platform in a 3D-rich environment. The framework described here is implemented using a number of monocular or stereo cameras distributed around the vehicle to provide 360 degrees coverage. Furthermore, the framework described here utilizes numerous filters to reduce the number of false positive identifications of the targets.
Abstract:
The present invention provides an improved system and method for estimating range of the objects in the images from various distances. The method comprises receiving a set of images of the scene having multiple objects from at least one camera in motion. Due to the motion of the camera, each of the images are obtained at different camera locations Then an object visible in multiple images is selected. Data related to approximate camera positions and orientations and the images of the visible object are used to estimate the location of the object relative to a reference coordinate system. Based on the computed data, a projected location of the visible object is computed and the orientation angle of the camera for each image is refined. Additionally, pairs of cameras with various locations can then be chosen to obtain dense stereo for regions of the image at various ranges. The process is further structured so that as new images arrive, they are incorporated into the pose adjustment so that the dense stereo results can. be updated.