摘要:
A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
摘要:
A host lattice modified GOS scintillating material and a method for using a host lattice modified GOS scintillating material is provided. The host lattice modified GOS scintillating material has a shorter afterglow than conventional GOS scintillating material. In addition, a radiation detector and an imaging device incorporating a host lattice modified GOS scintillating material are provided. A spectral filter may be used in conjunction with the GOS scintillating material.
摘要:
The invention relates to a radiation detector (100), particularly for X-rays (X) and for γ-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
摘要:
A radiation detector (100) includes an array of scintillator pixels (102) in optical communication with a photosensor. The scintillator pixels (102) include a hygroscopic scintillator (104) and one or more hermetic covers (106a, 106b). A desiccant (124) may be disposed between a hermetic cover (106a) and the scintillator (104) or between the hermetic covers (106a, 106b).
摘要:
The invention relates to a radiation detector (100), particularly for X-rays (X) and for y-rays, which comprises a combination of (a) at least one primary conversion layer (101a-101f) with a low attenuation coefficient for the photons and (b) at least one secondary conversion layer (102) with a high attenuation coefficient for the photons. In preferred embodiments, the primary conversion layer (101a-101f) may be realized by a silicon layer coupled to associated energy-resolving counting electronics (111a-111f, 121). The secondary conversion layer (102) may be realized for example by CZT or GOS coupled to energy-resolving counting electronics or integrating electronics. Using primary conversion layers with low stopping power allows to build a stacked radiation detector (100) for spectral CT in which the counting rates of the layers are limited to feasible values without requiring unrealistic thin layers.
摘要:
The invention relates to an apparatus (10) for counting X-rayphotons (12, 14), in particular photons in a computer tomograph. The events from a first photon-sensitive element (20) are recorded in a first integrator (24), and the events coming from a second photon-sensitive element (22) are counted in a second integrator (26). A first summing unit (28) is provided for summing the values from the first and second integrators (24, 26) and a result signal to obtain a sum, wherein the result signal is obtained from a feedback device (30) being provided with the sum. It is there possible to reduce a total information density generated by the impinging photons (12, 14), so that a data stream with a reduced information density (or reduced data rate) is present at an output (34). The invention also relates to a corresponding imaging device (16) based on the detection of X-rayphotons (12, 14), in particular for medical use and to a method for counting X-rayphotons (12, 14), in particular photons in a computer tomograph.
摘要:
The present invention relates to an apparatus (10) for counting X-ray photons (12, 14). The apparatus (10) comprises a sensor (16) adapted to convert a photon (12, 14) into a charge pulse, a processing element (18) adapted to convert the charge pulse (51) into an electrical pulse (53) and a first discriminator (20) adapted to compare the electrical pulse (53) against a first threshold (TH1) and to output an event (55) if the first threshold (TH1) is exceeded. A first counter (22) counts these events (55), unless counting is inhibited by a first gating element (24). The first gating element (24) is activated when the first discriminator (20) outputs the event (55), and it is deactivated, when the processing of a photon (12, 14) is found to be complete or about to be completed by a measurement or by the knowledge about the time that it takes to process a photon (12, 14) in the processing element (18). By activating and deactivating the first counter (22) pile-up events, i.e. pile-up of multiple electrical pulses (53), can be addressed. The invention also relates to a corresponding imaging device and a corresponding method.
摘要:
The invention relates to an energy-resolving detection system for detecting radiation (4). The energy-resolving detection system comprises a first layer (21) for absorbing a part of the radiation (4) and a radiation quanta counting unit comprising a second layer (26) for counting radiation quanta of the radiation (4). A read-out unit (29) is coupled with the radiation quanta counting unit for reading out the radiation quanta counting unit. The first layer (21) and second layer (26) are arranged such that the radiation (4), which is incident on the detection system and which reaches the second layer (26), has passed the first layer (21).
摘要:
The present invention is directed to a freshness indicator (9) for a chilled beverage and in particular to a beverage dispensing device (1) with a freshness indicator (9) for a chilled beverage, wherein the beverage dispensing device (1) comprises an outer housing (7), a tapping device (2) for dispensing a beverage, a beverage container (4) being placeable in the outer housing (7) and connectable with the tapping device (2), and the outer housing (7) functioning as a chiller (8), characterized in that the beverage freshness indicator device (9) comprises: a display (10) for indicating the storage temperature, maximum storage period, actual freshness of the beverage, the time left until expiry of the freshness and/or the date of expiry of the freshness, a data input unit (11) for the input of data and/or means (12) for recording replacement of the beverage container (4), at least one temperature sensor (13) for measuring the storage temperature of the beverage, —a temperature controller (14) for adjusting the cooling temperature of the chiller (8), a data storage unit (15) for storing the freshness criteria, a signal processing unit (16), which temperature sensor (13) transmits a signal regarding the current beverage storage temperature to the signal processing unit (16) and the signal processing unit (16) calculates, depending on the recorded storage temperature period and based on stored freshness criteria, the actual freshness of the beverage, the time left until expiry of the freshness of the beverage and/or the date of expiry of the freshness of the beverage, and the signal processing unit (16) transmits the calculated data to the display (10).
摘要:
A scintillation element comprises a scintillation material, and a reflective layer, wherein the reflective layer is formed as an intrinsic part of the scintillation material. Preferably, a plurality of scintillation elements may be arranged to form a scintillation array. A method for producing a scintillation element comprises providing a scintillation material, and producing a reflective layer at the scintillation material by exposing the scintillation material to physical and/or chemical conditions in such a way that the reflective layer is formed out of a part of the scintillation material.