摘要:
The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr
摘要:
The present invention relates to a method of producing a high damage tolerant aluminium alloy rolled product a high toughness and an improved fatigue crack growth resistance, including the steps of: a.) casting an ingot having a composition selected from the group comprising AA2000, AA5000, AA6000, and AA7000-series alloys; b.) homogenising and/or pre-heating the ingot after casting; c.) hot rolling the ingot into a hot rolled product and optionally cold rolling the hot rolled product into a cold rolled product, wherein the hot rolled product leaves the hot rolling mill at an hot-mill exit temperature (TExit) and cooling the hot rolled product from the TExit to 150° C. or lower with a controlled cooling cycle with a cooling rate falling within the range defined by: T(t)=50−(50−TExit)eαt and wherein T(t) is the temperature (° C.) as function in time (hrs), t is the time (hours) and α is in the range of −0.09±0.05 (hrs−1).
摘要:
The present invention relates to a method for producing high strength balanced Al—Mg—Si alloy with an improved fatigue crack growth resistance and a low amount of intermetallics, comprising the steps of a) casting an ingot with the following composition (in weight percent) Si: 0.75–1.3, Cu: 0.6–1.1, Mn: 0.2–0.8, Mg: 0.45–0.95, Fe: 0.01–0.3, Zr:
摘要:
The invention relates to a weldable, high-strength aluminium alloy wrought product, which may be in the form of a rolled, extruded or forged form, containing the elements, in weight percent, Si 0.8 to 1.3, Cu 0.2 to 1.0, Mn 0.5 to 1.1, Mg 0.45 to 1.0, Ce 0.01 to 0.25, and preferably added in the form of a Misch Metal, Fe 0.01 to 0.3, Zr
摘要:
In the welding of aluminum alloy, structural components, e.g. in the aerospace industry, one of the welded components is a sheet product having a core and a clad layer of filler material. During welding, the clad layer provided filler for the welding pool, and the core remains substantially unmelted. Consequently, adhesion between the core and the clad layer maintains its strength, e.g. keeps at least 80% of its pre-welding strength.
摘要:
A sintering device for the production of cupular solid electrolytes, which are used to separate anode and cathode compartments in sodium-sulphur cells, is in the form of a jacket tube and is produced from two or more metal oxides or metal hydroxides. The device and method avoid the disadvantages of the prior art sintering devices that are costly to manufacture and in most cases destroy the uniform distribution of the sodium within the soilid electrolyte material.