摘要:
An implantable medical device (IMD) system as disclosed herein includes a telemetry transceiver device that can receive wireless IMD data from an IMD, along with wireless physiological sensor data from an external physiological sensor device. Wireless communication between the IMD and the telemetry transceiver device is performed in accordance with a first wireless data communication protocol, and wireless communication between the external physiological sensor device and the telemetry transceiver device is performed in accordance with a second wireless data communication protocol. The telemetry transceiver device can function as a hub that communicates patient data to a centralized remote computing architecture. The remote computing architecture may include software applications for processing the received patient data.
摘要:
Polarization signals, which represent voltages measured at a pacemaker electrode, are not constant and may drift. Polarization signal drift, which often precedes undesirable pace polarization artifacts, is more significant when the pacemaker is inhibited from providing an electrical stimulation to the patient's heart. The present invention provides an implantable system and methods for stabilization of a polarization signal. Electrical pulses may be applied to stabilize a polarization signal. In one implementation of the invention, polarization signal stabilization may be used as part of process to terminate tachycardia.
摘要:
An implantable medical device uses a method for dynamically managing physiological signal monitoring. A physiological signal is sensed for detecting physiological events in response a first threshold. A determination is made whether a second threshold has been met in response to detecting physiological events. If the second threshold has been met, detailed monitoring of the physiological events is enabled.
摘要:
There is provided a pacing system, preferably a VDD system having a single pass lead with one or two ventricular electrodes and a pair of atrial electrodes. The pacemaker has timing and logic capability for determining when an atrial back-up pulse, such an atrial synchronization pulse, can be delivered, and also whether the pacemaker can provide for continuing atrial pacing. The pacemaker is provided with a plurality of modules for determining the likelihood that a delivered atrial pace pulse resulted in atrial contraction, and for storing data relating to the probable capture or no.sub.-- capture result of each delivered pace pulse. One of the capture-determining modules is a timing module which stores a plurality of rules by which a sequence of events and rates surrounding a delivered atrial pace pulse is analyzed to determine the probability of capture. The pacemaker carries out capture probability determinations following each delivered pace pulse, and on the basis of such continuous determinations evaluates atrial pace pulse capture efficiency, and adjusts the atrial pace pulse output level to optimize atrial pacing.