摘要:
An image display according to the present invention includes a driving device which performs pulse width modulation drive, restrains power consumption, and produces a good multi-tone display. The image display makes the difference between the scan line voltage and the signal line voltage equal in positive polarity writing and negative polarity writing by which pixels are AC driven, so as to make the on-resistances of transistors equal. This allows a maximum pulse width, the size of switching elements, etc. to be determined first so that they match positive polarity writing in which the resistances value of the switching elements rise. No high frequency clock is required to produce subtle differences of charge ratio in negative polarity writing in which the resistances of the switching elements fall. Power consumption which depends on the clock frequency drops too.
摘要:
In a signal line drive circuit of an active-matrix type liquid-crystal display which is a voltage-controlled type display with a capacitive load, n selector switches (161 to 16n) are provided between buffer circuits (151 to 15n) to which voltages responsive to an image to be displayed are inputted from reference voltage selection circuits (131 to 13n), and output terminals (T1 to Tn) to which are connected image signal lines. These selector switches (161 to 16n), based on a shorting control signal (Csh) that is at a high level when the polarity is reversed to perform AC drive of the liquid-crystal panel, switch the output signals (OUT1 to OUTn of the image signal line drive circuit between the output signals of the buffer circuits (151 to 15n) and the common electrode signal (Vcom). By doing this, each of the image signal lines is, for a prescribed time only when the polarity is reversed, separated from the buffer circuits (151 to 15n) and shorted to the common electrode. This configuration reduces the power consumption of the signal line drive circuit
摘要翻译:在作为具有电容性负载的电压型显示器的有源矩阵型液晶显示器的信号线驱动电路中,在缓冲电路(151〜15n)之间设置n个选择开关(161〜16n)〜 从参考电压选择电路(131〜13 n)输入响应于要显示的图像的电压,以及连接有图像信号线的输出端子(T1〜Tn)。 这些选择开关(161〜16n)根据极性反转时的高电平的短路控制信号(Csh)进行液晶面板的交流驱动,将输出信号(OUT 1〜OUT n (151〜15n)的输出信号和公共电极信号(Vcom)之间的图像信号线驱动电路,通过这样做,每个图像信号线仅在极性 与缓冲电路(151〜15n)分离并与公共电极短路,这种结构降低了信号线驱动电路的功耗
摘要:
An image display according to the present invention includes a driving device which performs pulse width modulation drive, restrains power consumption, and produces a good multi-tone display. The image display makes the difference between the scan line voltage and the signal line voltage equal in positive polarity writing and negative polarity writing by which pixels are AC driven, so as to make the on-resistances of transistors equal. This allows a maximum pulse width, the size of switching elements, etc. to be determined first so that they match positive polarity writing in which the resistances value of the switching elements rise. No high frequency clock is required to produce subtle differences of charge ratio in negative polarity writing in which the resistances of the switching elements fall. Power consumption which depends on the clock frequency drops too.
摘要:
An image display according to the present invention includes a driving device which performs pulse width modulation drive, restrains power consumption, and produces a good multi-tone display. The image display makes the difference between the scan line voltage and the signal line voltage equal in positive polarity writing and negative polarity writing by which pixels are AC driven, so as to make the on-resistances of transistors equal. This allows a maximum pulse width, the size of switching elements, etc. to be determined first so that they match positive polarity writing in which the resistances value of the switching elements rise. No high frequency clock is required to produce subtle differences of charge ratio in negative polarity writing in which the resistances of the switching elements fall. Power consumption which depends on the clock frequency drops too.
摘要:
An image display according to the present invention includes a driving device which performs pulse width modulation drive, restrains power consumption, and produces a good multi-tone display. The image display makes the difference between the scan line voltage and the signal line voltage equal in positive polarity writing and negative polarity writing by which pixels are AC driven, so as to make the on-resistances of transistors equal. This allows a maximum pulse width, the size of switching elements, etc. to be determined first so that they match positive polarity writing in which the resistances value of the switching elements rise. No high frequency clock is required to produce subtle differences of charge ratio in negative polarity writing in which the resistances of the switching elements fall. Power consumption which depends on the clock frequency drops too.