摘要:
An apparatus that can operate with electronic ballasts (10) for electric discharge lamps to drive dc-powered lighting equipment (26) is provided. The apparatus is directly connected to the output of the electronic ballast (10) and is then used to control the power being supplied to the dc-powered lighting equipment (26). The maximum power delivered to the dc-powered lighting equipment (26) is substantially equal to the rated output power of the electronic ballast (10). A switching converter is acted as the necessary input impedance for the electronic ballast (10). Thus, the active power and reactive power drawn from the electronic ballast (10) can be controlled. The output of the switching converter provides dc power for the dc-powered lighting equipment (26).
摘要:
An apparatus that can operate with electronic ballasts (10) for electric discharge lamps to drive dc-powered lighting equipment (26) is provided. The apparatus is directly connected to the output of the electronic ballast (10) and is then used to control the power being supplied to the dc-powered lighting equipment (26). The maximum power delivered to the dc-powered lighting equipment (26) is substantially equal to the rated output power of the electronic ballast (10). A switching converter is acted as the necessary input impedance for the electronic ballast (10). Thus, the active power and reactive power drawn from the electronic ballast (10) can be controlled. The output of the switching converter provides dc power for the dc-powered lighting equipment (26).
摘要:
An output compensator for a regulator is provided that can improve the dynamic response of a regulator, and which does not require the redesigning of the power conversion stage or control stage of the regulator, but simple circuit connection of the compensator circuit to the output stage of the regulator. The compensator senses an output signal at a passive component at an output of the regulator; generates a compensating signal based on a difference signal, the difference being a difference between a level of a reference signal for the regulator and the sensed output signal; and applies the compensating signal to the passive output component to reduce the difference between the level of the reference signal and the sensed output signal. The passive output component may be, for example, a capacitor or an inductor, depending on the operation of the regulator.
摘要:
Reducing, suppressing or canceling series parasitic inductance and/or resistive effects that affect the frequency response of components, elements and/or circuits in an electronic circuit or system that exhibit capacitance is disclosed. Noise generated by series parasitic inductance and/or parasitic resistance of the components, the physical orientation of the components, and/or the layout of components, devices and/or conductive tracks (board traces) on printed circuit boards within an electronic circuit or system is reduced, suppressed or canceled. The reduction, suppression or cancellation is achieved by adding a voltage source in series with a part or component of the electronic circuit or system that exhibits capacitance, the current source being adapted to deliver a compensating voltage of roughly equal magnitude and roughly opposite phase to parasitic voltage associated with the part or component.
摘要:
Apparatus and methods are described for the voltage control of power converters in which the input and output voltages of the converter are not sensed directly but are derived from an inductor voltage which in turn is derived by sensing an instantaneous inductor current.
摘要:
Reducing, suppressing or canceling parallel parasitic capacitance and/or resistive effects that affect the frequency response of components, elements and/or circuits in an electronic circuit or system that exhibit inductance is disclosed. Noise generated by parallel parasitic capacitance and/or parasitic resistance of the components, the physical orientation of the components, and/or the layout of components, devices and/or conductive tracks (board traces) on printed circuit boards within an electronic circuit or system is reduced, suppressed or canceled. The reduction, suppression or cancelation is achieved by adding a current source in parallel with a part or component of the electronic circuit or system that exhibits inductance, the current source being adapted to deliver a compensating current of roughly equal magnitude and roughly opposite phase to parasitic current associated with the part or component.