摘要:
A spacer grid for nuclear fuel assemblies is disclosed. This spacer grid has a plurality of side weld supports, that is, main supports, upper sub-supports and lower sub-supports, on its interlaced inner straps, with two flow mixing vanes integrally extending upward from each of the main supports. This spacer grid is fabricated by seam-welding the interlaced first and second inner straps to each other along the upper axial junction lines of the crossing main and upper sub-supports at the top of the intersections, and along the lower axial junction lines of the crossing lower sub-supports at the bottom of the intersections, thus forming side weld lines at the intersections. This spacer grid reduces the damage of fuel rod during a fuel rod insertion process by decreasing interference between flow mixing vanes and fuel rods, accomplishes a desired soundness by seam welding, improves the coolant mixing efficiency of the flow mixing vanes by excluding welding windows, and reduces hydraulic resistance caused by weld beads.
摘要:
A spacer grid for use in a nuclear fuel assembly has double-deflected vanes that guide an axial flow of coolant around fuel rods and thereby generate swirl flow. The vanes each have a double bend projecting upwardly from first inner straps and projecting toward one fuel rod. The vanes are sufficiently wide at their bases to prevent inadvertent deformation due to contact with fuel rods during an insertion of fuel rods into the cells. The vanes also make a smooth variation in the cross-sectional area of the coolant channel at the outlet of the spacer grid, thus reducing a loss of pressure during reactor operation.
摘要:
A nuclear fuel spacer grid, fabricated by intersecting a plurality of grid strips and used for placing and supporting a plurality of elongated fuel rods within a nuclear fuel assembly, is disclosed. The spacer grid of this invention has a plurality of dimple vanes on its grid strips. The dimple vanes are designed to guide the coolant from one cell to neighboring cells of the spacer grid, thus accomplishing a desired coolant mixing effect and increasing the thermal allowance of the fuel rods and accomplishing a high performance fuel assembly. The spacer grid also has a multi-spring structure, consist in of one arc-shaped main spring and two bow-shaped sub-springs. The main spring directly supports the fuel rod within the spacer grid, while the sub-springs have the same radius of curvature as that of the external surface of the fuel rod and effectively support the fuel rod when the main spring fails to support the fuel rod. The spacer grid of this invention thus accomplishes desired soundness of the fuel rods within the fuel assembly during an expected life span of the fuel rods.
摘要:
A spacer grid with hybrid flow-mixing devices for nuclear fuel bundle is made up of an intersection of a plurality of thin straps at right angles to form a plurality of cells for receiving and supporting fuel rods. Each strap is composed of two types of strap units, called a primary strap unit and a secondary strap unit, which are alternately arranged along the strap. The primary strap unit is a strap section having a primary vane set, and a secondary strap unit is a strap section having a secondary vane set. The straps intersect such that, by primary and secondary strap units, each intersection forms a hybrid flow-mixing device around the top of each junction. The primary vane set, consisting of a trapezoidal primary vane stand and two bent primary mixing vanes on both sides, protrudes upwardly from the strap and is primarily for generating cross flow between channels. Meanwhile, the secondary vane set, consisting of a trapezoidal secondary vane stand and two bent primary mixing vanes on both sides, also protrudes upwardly from the strap, but is primarily for swirl flow generation within the channels. The hybrid flow-mixing device induces a complex but effective flow pattern in flow channels for fuel rod cooling.
摘要:
A double strip mixing grid for nuclear reactor fuel assemblies is disclosed. This grid is fabricated by intersecting at right angles a plurality of double strips, each fabricated by welding two thin sheets together into a single structure with coolant channels. The mixing grid, having the channels, effectively mixes low temperature coolant with high temperature coolant within a fuel assembly, thus improving the thermal efficiency of the fuel assemblies. This mixing grid also effectively prevents the coolant from being partially overheated, thus improving the soundness of nuclear reactors. This mixing grid also has swirling flow blades and/or lateral flow blades to further improve the thermal efficiency of the fuel assembly. This mixing grid elastically supports the fuel rods by the sheets of the double strips, collaterally acting as positioning springs. Each double strip also has a vertical slot at a position around each channel, and so the elastic range of the positioning springs of the grid is preferably enlarged. The slots also enlarge the fuel rod contact area of the grid, thereby effectively protecting the fuel rod from fretting corrosion. In addition, the intersecting strips are welded together at the intersections through a continuous welding process, thus improving the mechanical strength of the grid.