Abstract:
A treatment method for a magnesium slag, comprises: Step a, producing magnesium particles and a crude solution of magnesium slag by digesting and sifting a magnesium slag; Step b, filtering the crude solution of magnesium slag sifted in Step a, so that mixed chlorides are obtained after a moisture in a filtrate is removed; Step c, obtaining a high purity magnesium oxide by dissolving a filter residue obtained in Step b via an ammonium sulfate method and a magnesium precipitation reaction as well as post-treatment. With the method, utilization of magnesium slag can reach up to more than 90% with a higher recycling rate, while the discharge of solid wastes can be reduced greatly which solid wastes are less contaminative to the environment, so that the contamination to the environment is greatly reduced and the required energy saving and emission reduction are also achieved.
Abstract:
A pickling production line comprises a material-holding apparatus, a pickling zone, and a water wash zone; the pickling zone and the water wash zone are independently arranged; the material-holding apparatus is filled with magnesium alloy waste, and self-rotates successively in the pickling zone and the water wash zone for pickling and water washing respectively. In the pickling production line for magnesium alloy waste material, the magnesium alloy waste material is pickled and washed more thoroughly; coatings and impurities on the surface of the magnesium alloy waste material are removed, the efficiency of the cleaning and the consistency of the cleaning are high, and each piece of equipment in the entire production line is connected in a compact manner; the invention has a high degree of automation, low environmental pollution, conserves resources, is highly efficient in production, and is suitable for the bulk pickling and cleaning of magnesium alloy waste material.
Abstract:
A production line comprises: a pretreatment system, a melting and refining system, and a casting system; magnesium alloy waste material passes in sequence through the pretreatment system, the melting and refining system, and the casting system, resulting in magnesium alloy ingots that conform to national standards. The production line for producing national-standard magnesium alloy ingots on the basis of magnesium alloy waste material processes magnesium alloy waste material, passing same through a pretreatment system, a preheating system a melting and refining system, a thermal insulation system, a casting system, and a post-treatment system; coatings and impurities on the surface of the magnesium alloy waste material are removed, and the material is processed into magnesium alloy ingots conforming to national standards; the pieces of equipment of each system are well-connected, the degree of automation is high, operation is simple, and production is highly efficient.
Abstract:
A method comprises sorting and removing impurities from magnesium alloy waste material, and cleaning and drying said material, the cleaning being high-pressure rinsing, pickling, and water washing, performed in sequence. The method employs high-pressure rinsing during the pretreatment of magnesium alloy waste material; the cleaning effectiveness is excellent, the effectiveness of the removal of impurities from the surface of the magnesium alloy waste material is much better than in conventional processes, and the amount of clean waste material can exceed 90% of the total amount of processed waste material; the clean magnesium alloy waste material obtained from the pretreatment method may be used as the entire raw materials for casting national-standard alloy ingots, the addition of costly high-purity magnesium is unnecessary, and the amount of alloy raw material that must be added is significantly reduced; during processing, little waste material is lost, costs are low, and efficiency is high.
Abstract:
A method comprises: sorting and removing impurities from magnesium alloy waste material, and cleaning and drying said material, the cleaning comprising high-pressure rinsing, pickling, and water washing, performed in sequence; preheating the magnesium alloy waste material obtained in step a, and adding material, melting, refining, removing impurities, and alloying to obtain a magnesium alloy liquid; casting ingots from the magnesium alloy liquid obtained in step b, to obtain magnesium alloy ingots conforming to national standards. The method directly takes magnesium alloy waste material as a raw material to produce magnesium alloy ingots conforming to national standards; the addition of costly high-purity magnesium is unnecessary, and the number of castings in which the amount of harmful elements meets specifications accounts for 98% or more of the total number of castings; 2% slightly exceed specifications, which does not constitute a severe number of times specifications are exceeded.