摘要:
The video processing circuit includes a boundary detection unit that detects a specific boundary, which is a part of a boundary of a first pixel for which an applied voltage designated by the video signal is less than a first voltage, and a second pixel for which the applied voltage is more than a second voltage larger than the first voltage, the specific boundary being determined by tilt azimuth of the liquid crystal, and a replacement unit that replaces an applied voltage to a liquid crystal element corresponding to the first pixel with a predetermined voltage from the applied voltage designated by the input video signal when the applied voltage designated by the video signal is less than a third voltage smaller than the first voltage with respect to the first pixel adjacent to the specific boundary.
摘要:
A video processing circuit used in a liquid crystal panel, includes: a first boundary detector that analyzes a video signal of a present frame to detect a boundary between a first pixel and a second pixel; a second boundary detector that analyzes a video signal of a frame one frame before the present frame to detect a boundary between the first pixel and the second pixel; a correction portion that corrects an applied voltage to a liquid crystal device corresponding to a second pixel which is adjacent to a portion of the boundary detected by the first boundary detector, which is changed from the boundary detected by the second boundary detector from the applied voltage specified by the video signal of the present frame to a voltage equal to or higher than the first voltage and lower than the second voltage.
摘要:
A video processing circuit, includes: a boundary detection section adapted to detect a boundary between a first pixel having an applied voltage, which is designated by the video signal input and is lower than a first voltage, and a second pixel having an applied voltage, which is designated by the video signal input and is one of equal to and higher than a second voltage higher than the first voltage, in a present frame and in a previous frame, which is one frame earlier than the present frame, respectively; and a correction section adapted to correct the video signal adapted to designate the applied voltages to the liquid crystal elements corresponding to the first pixel and the second pixel abutting on a moving section in the boundary of the present frame moving one pixel from the boundary in the previous frame so as to reduce a lateral electrical field caused by the first pixel and the second pixel.
摘要:
Provided is a video processing circuit which designates an applied voltage, which is to be applied to a liquid crystal element of each pixel, based on a video signal, including: a first boundary detection portion which analyzes a video signal of a current frame and detects a boundary between a pixel, to which an applied voltage near a maximum grayscale is applied, and a pixel, to which an applied voltage near a minimum grayscale is applied, based on the video signal; a second boundary detection portion which analyzes a video signal of a frame preceding the current frame and detects a boundary between the pixel, to which the applied voltage near the maximum grayscale is applied, and the pixel, to which the applied voltage near the minimum grayscale is applied, based on the video signal; and a correction portion which corrects the applied voltage to a voltage which provides an initial tilt angle to a liquid crystal molecule in a case where the applied voltage designated with the video signal of a pixel adjacent to a portion changed from the boundary detected by the second boundary detection portion among the boundaries detected by the first boundary detection portion is lower than the voltage which provides the initial tilt angle to the liquid crystal molecule.
摘要:
An image display device having an optical modulation element, which modulates light emitted from a light source according to display information, and displaying a display image based on the display information includes: a unit adjusting the amount of illumination light with respect to light emitted from the light source on the basis of brightness information on the brightness of the display image based on the display information; a color conversion processing unit that performs a color conversion process according to the brightness information with respect to the display information so that the display image can be color-reproduced within a predetermined color space; and a display and driving unit that drives the optical modulation element on the basis of the display information having been subjected to the color conversion process so as to display the display image.
摘要:
A driving circuit of an electro-optical device that can reduce or prevent bad influences of a transverse electric field and a crosstalk is provided. There can also be provided a driving circuit of an electro-optical device, the driving circuit generating timing signals for supplying scanning signals to a display unit in which pixels can be formed corresponding to the respective intersections between a plurality of data lines and a plurality of scanning lines arranged in a matrix shape and the switching elements provided in the pixels are turned on by the scanning signals supplied to the scanning lines, so that the image signal supplied to the data lines are applied to the pixel electrodes of the pixels through the switching elements to drive the display unit.
摘要:
A lighting apparatus used for a projection type display is provided, which can change the incident ray volume to an optical modulation device without changing the optical output intensity of the lamp, and can exhibit excellent effects in expressive power of an image and adaptability to the use environment. The lighting apparatus of the present invention comprises; a light source, two fly-eye lenses constituting a uniform lighting device, and a shading plate arranged between these fly-eye lenses and constituting a dimming device for adjusting the amount of light of the outgoing light from the light source. The angle of inclination of the shading plate is controlled based on an image signal supplied to the optical modulation device, thereby enabling adjustment of the amount of light.
摘要:
To provide a drive circuit, a drive method, a display device, and a projection display device capable of increasing contrast of an image a mean gray level (first gray level characterizing brightness) Gf is detected from an image signal DATA per unit time. On the basis of the mean gray level Gf, a variation signal ΔS is set. By supplying the variation signal ΔS to an opposing electrode, the image signal DATA applied to a liquid crystal layer is modulated. In accordance with an increase in the mean gray level Gf, the gray level of an effective signal applied to the liquid crystal layer (image signal modulated using the variation signal ΔS) is set to be greater than the gray level of the unmodulated image signal.
摘要:
An optical diaphragm for adjusting an amount of an incident light beam, includes: light shielding vanes that are configured movably, and move to change an opening area enabling a passage of the light beam, thereby adjusting the amount of the light beam; an electromagnetic actuator including a coil through which a current passes, and a permanent magnet that generates a magnetic flux, moves with respect to the coil by an electromagnetic force due to an interaction between the current passing through the coil and the magnetic flux, and is connected to the light shielding vanes to move the light shielding vanes; and a position detector including: a magnetic element that outputs a predetermined voltage in accordance with intensity of a magnetic field from the permanent magnet; and an output characteristics corrector that obtains a predetermined correction parameter, and corrects output characteristics of the magnetic element based on the correction parameter.
摘要:
To reduce the color break-up and to provide high quality projection images. A method of driving a spatial light modulator, including generating a sub-frame pulse signal for a first colored light R1 through R8, B1 through B8, generating a sub-frame pulse signal for a second colored light G1 through G8, arranging the sub-frame pulse signals for the respective colored light so that at least three of the sub-frame pulse signals for the first colored light R1 through R8, B1 through B8 adjoin either one of the sub-frame pulse signals for the second colored light G1 through G8 during at least one frame of the image, and driving a plurality of movable mirror elements in accordance with the sub-frame pulse signals for the respective colored light arranged in arranging the sub-frame pulse signals, the movable mirror elements being alternatively moved at least to a first reflecting position and a second reflecting position.