Abstract:
Fins and tubes are brazed by brazing material spread on the inside of bent portions. As the interval between the fins and the tubes does not increase upon melting the brazing material, the tubes and the fins can be easily piled and assembled with each other, and the operability in assembling a heat exchanger can be improved. Further, as the brazing material remains mainly around the bent portions, most parts of the fins and the tubes are not covered with the brazing material, and there is no diffusion of the brazing material at the heating of the brazing step. Accordingly, heat exchanging performance of the heat exchanger can be improved, and even if the thickness of the fins and that of the tubes are reduced, the occurrence of the erosion can be prevented.
Abstract:
A tube is formed by brazing first and second plates, and is connected to a pipe through a connection block being brazed to a contacting surface of the first plate. A brazing material is clad on an inner surface of the first plate opposite to the contacting surface, and a hole penetrating through the first plate is formed in the first plate at a position corresponding to the connection block. Thus, during brazing, the brazing material clad on the inner surface of the first plate is supplied to the contacting surface through the hole by capillary phenomenon, so that the connection block is brazed to the first plate. As a result, an apparatus formed by brazing plural metal members, such as the tube of an oil cooler, is produced in low cost.