Abstract:
Disclosed is an organic light-emitting device (OLED), wherein a lower electrode, an organic emitting unit, an upper electrode, and a light enhance layer are subsequently formed between a bottom substrate and a top substrate. The light enhance layer has higher refractive index, between 2 and 3, than that of the top substrates, thereby efficiently improving the luminance intensity of the OLED.
Abstract:
The present invention relates to a tandem organic light emitting device, which reduces the driving voltage by using a non-doping material having both the electron transporting and hole transporting abilities to act, respectively, as an electron transporting layer and a hole transporting layer that are in contact with the connecting layer. The tandem organic light emitting device does not have to double its driving voltage as a result of the increasing of the number of the emitting element contained therein. However, the brightness and the current efficiency of the device of the present invention will be higher than the theoretical fold value calculated in accordance with the number of emitting element contained in the device.
Abstract:
A system for displaying images includes an organic light-emitting device (OLED) including an anode layer on a substrate, a cathode layer, and an organic light-emitting layer disposed between the anode and cathode layers. The cathode layer includes a metal layer in direct contact with the organic light-emitting layer, a transparent conductive layer, and an organic buffer layer with a carrier mobility in a range of 10−3 cm2/(V·s) to 10−5 cm2/(V·s) disposed between the metal layer and the transparent conductive layer.
Abstract translation:用于显示图像的系统包括在基板上包括阳极层的有机发光器件(OLED),阴极层和设置在阳极和阴极层之间的有机发光层。 阴极层包括与有机发光层直接接触的金属层,透明导电层和载流子迁移率在10 -3 cm 2 /(V·s)〜10 -5的范围内的有机缓冲层 设置在金属层和透明导电层之间的cm2 /(V·s)。
Abstract:
An organic electroluminescent display device and fabrication method thereof is provided. The device includes a first substrate having at least one thin film transistor; an electroluminescent unit formed on the first substrate and electrically connect to the thin film transistor; a first protective layer formed on the electroluminescent unit; a second protective layer formed on the first protective layer; and a third protective layer formed on the second protective layer and in contact with the first protective layer. The device further comprises a second substrate sealed to the first substrate to form the electroluminescent unit between the first substrate and second substrate. In the device, the first protective layer comprising inorganic material, the second protective layer comprising organic material and the third protective layer comprising inorganic material are formed on the electroluminescent unit to reduce oxidation of electrodes by preventing infiltration of moisture.
Abstract:
A display device including a display panel is provided, including a substrate having a luminance region and a none-luminance region thereover. An interlayer dielectric layer is disposed over the substrate. A reflection layer is disposed over the interlayer dielectric layer in the luminance region. A planarization layer is disposed over the reflection layer, having a rugged top surface corresponding to the reflection layer. A first electrode is disposed over the planarization layer, having a rugged top surface corresponding to the reflection layer. A pixel defining layer is disposed over the planarization layer, exposing the rugged top surface of the first electrode and defining the luminance region. An electroluminescent layer and a second electrode are sequentially stacked over the first electrode.
Abstract:
A system for displaying an image includes a plurality of pixels each having a first organic light-emitting device (OLED), a second OLED and a third OLED. The pixel includes a first electrode layer, a first organic light-emitting layer, a second organic light-emitting layer, a second electrode layer and a color filter. The first organic light-emitting layer is disposed on the first electrode layer and within the first OLED and the second OLED. The second organic light-emitting layer is disposed on the first electrode layer and within the second OLED and the third OLED so that the first and second organic light-emitting layers overlap within the second OLED. The second electrode layer is disposed on the first organic light-emitting layer and the second organic light-emitting layer. The color filter is disposed within the second OLED.
Abstract:
An organic electroluminescent material and an organic electroluminescent material used for electroluminescent devices is characterized by emission with a high luminance, high illuminant efficiency, low drive voltage, favorable color purity and high thermal steadiness. The hydrogen atom, halogen atom, cyanide group, alkyl group, alkylidene group, cycloalkane group, alkoxy group, amnio group, aromatic hydroxy group, aromatic bi-alkyl group, alkylaryl group as a substitutive group are used. Not only may it increase the material's glass transition temperature and inhibit the phenomenon of molecular split but also cause this organic electroluminescent device to show a high level of steadiness.
Abstract:
A system for displaying images is provided. The system includes a full-color organic electroluminescent device having an anode. A first emitting layer and a second emitting layer are sequentially disposed on the anode. A cathode is disposed on the second emitting layer. The first and second emitting layers include, respectively, a first dopant and a second dopant, wherein the energy gap of the first dopant is different from that of the second dopant.
Abstract:
An organic electroluminescent display device and fabrication method thereof is provided. The device includes a first substrate having at least one thin film transistor; an electroluminescent unit formed on the first substrate and electrically connect to the thin film transistor; a first protective layer formed on the electroluminescent unit; a second protective layer formed on the first protective layer; and a third protective layer formed on the second protective layer and in contact with the first protective layer. The device further comprises a second substrate sealed to the first substrate to form the electroluminescent unit between the first substrate and second substrate. In the device, the first protective layer comprising inorganic material, the second protective layer comprising organic material and the third protective layer comprising inorganic material are formed on the electroluminescent unit to reduce oxidation of electrodes by preventing infiltration of moisture.
Abstract:
A system for displaying images is provided. The system includes a tandem electroluminescent device having a first electrode. N electroluminescent units are disposed on the first electrode in sequence, wherein N is an integral and not less than 2. A second electrode is disposed on the Nth electroluminescent unit. N-1interconnecting electrodes are provided, wherein each of the interconnecting electrodes is disposed between two adjacent electroluminescent units. The first electroluminescent unit includes a first emitting layer and a second emitting layer in sequence from the first electrode, and the first and second emitting layer have different physical quantities. The Nth electroluminescent unit includes a third emitting layer and a fourth emitting layer in sequence from the first electrode. The physical quantity of the third emitting layer is the same as that of the second emitting layer. The physical quantity of the fourth emitting layer is the same as that of the first emitting layer.