Abstract:
A method of detecting and compensating fail pixels in a holographic storage system. The method includes steps of: providing a plurality of image frames to show on a data plane for all pixels on the data plane being capable of outputting a light state or a dark state; sequentially recording the image frames into a storage medium; detecting the image frames by using a detecting apparatus for all pixels on the detecting apparatus being capable of outputting sensing signals corresponding to the light state and the dark state; defining a sensing difference value, which is a difference of the sensing signal outputting the light state and the dark state generated by one pixel; comparing the sensing difference value with a threshold value; and defining the corresponding pixel is a fail pixel if the sensing difference value is smaller than the threshold value.
Abstract:
A method of detecting and compensating fail pixels in a holographic storage system. The method includes steps of: providing a plurality of image frames to show on a data plane for all pixels on the data plane being capable of outputting a light state or a dark state; sequentially recording the image frames into a storage medium; detecting the image frames by using a detecting apparatus for all pixels on the detecting apparatus being capable of outputting sensing signals corresponding to the light state and the dark state; defining a sensing difference value, which is a difference of the sensing signal outputting the light state and the dark state generated by one pixel; comparing the sensing difference value with a threshold value; and defining the corresponding pixel is a fail pixel if the sensing difference value is smaller than the threshold value.
Abstract:
A method of designing a look-up table of a finite-state encoder, applied to a finite-state encoder, comprises steps of: determining a bit length of a legal output codeword derived from the finite-state encoder and a restrict condition; collecting a plurality of legal output codeword satisfied the restrict condition; determining a bit length of an input codeword derived to the finite-state encoder according to the amount of the plurality of the legal output codeword; determining the amount of states in the finite-state encoder according to the bit length of the input codeword and the bit length of the legal output codeword; dividing the plurality of legal output codeword to a plurality of subset according to the amount of the states in the finite-state encoder and a specific mathematic equation; determining the amount of the legal output codewords in the plurality of subset; and, completing the look-up table through determining a relationship among a present state, a previous state, and a corresponding subset, wherein the amount of the subsets used in the look-up table is greater than the amount of the states in the finite-state encoder and smaller than two times of the amount of the states in the finite-state encoder.
Abstract:
A holographic storage system. A low over-sampling technology and an adaptable gain-controlling unit are used in the holographic storage system for unequally amplifying signals generated by a detecting apparatus. Then the amplified signals generated by the detecting apparatus are summed in order to generate summing signals, which are used to detect original image frames for raising the resolution of the images and reducing the error rate of the data.
Abstract:
The present invention discloses an aberration correcting method for use between an optical disc drive and an optical disc. The optical disc drive includes an optical pickup head having an aberration-correcting unit and a control chipset. The method includes steps of: operating the optical pickup head in a focusing-locked and tracking-unlocked state; generating a read-back signal by projecting a laser beam to the optical disc; converting the read-back signal into a radio frequency signal and a tracking error signal by the control chipset; detecting corresponding amplitudes of the radio frequency signal or the tracking error signal at different compensation values by the control chipset; determining a target compensation value by selecting the compensation value corresponding to the maximum amplitude of the tracking error signal or the radio frequency signal; and controlling the aberration-correcting unit according to the target compensation value.
Abstract:
A method for generating a feedback signal in optical disc drives is disclosed. Firstly RF signal is generated by a pickup head and coupled to a converter to generate a digital signal. Then a detector generates a plurality of pseudo-jitter according to the digital signal. Thereafter a calculator receives the said pseudo-jitter and calculates for outputting a feedback signal to the pickup head.
Abstract:
A method of tracking error correction, primarily for utilization in optical disc drives using single beam optical pick-up heads. Delinearization in the tracking servo of a single beam optical pick-up head, contributed to by inherent design properties, is minimized by extracting a value proportional to a tracking error signal offset component from a tracking servo demand signal, applying a scaling factor to match the scaling applied to the tracking servo demand signal with scaling applied to the amplified tracking error signal, and subtracting the product of this function from the source signal i.e. the tracking error signal. The modified source signal, following this operation, has a reduced order of tracking error offset.
Abstract:
A method of designing a look-up table of a finite-state encoder, applied to a finite-state encoder, comprises steps of: determining a bit length of a legal output codeword derived from the finite-state encoder and a restrict condition; collecting a plurality of legal output codeword satisfied the restrict condition; determining a bit length of an input codeword derived to the finite-state encoder according to the amount of the plurality of the legal output codeword; determining the amount of states in the finite-state encoder according to the bit length of the input codeword and the bit length of the legal output codeword; dividing the plurality of legal output codeword to a plurality of subset according to the amount of the states in the finite-state encoder and a specific mathematic equation; determining the amount of the legal output codewords in the plurality of subset; and, completing the look-up table through determining a relationship among a present state, a previous state, and a corresponding subset, wherein the amount of the subsets used in the look-up table is greater than the amount of the states in the finite-state encoder and smaller than two times of the amount of the states in the finite-state encoder.
Abstract:
A method for generating a feedback signal in optical disc drives is disclosed. Firstly RF signal is generated by a pickup head and coupled to a converter to generate a digital signal. Then a detector generates a plurality of pseudo-jitter according to the digital signal. Thereafter a calculator receives the said pseudo-jitter and calculates for outputting a feedback signal to the pickup head.
Abstract:
A method of tracking error correction, primarily for utilization in optical disc drives using single beam optical pick-up heads. Delinearization in the tracking servo of a single beam optical pick-up head, contributed to by inherent design properties, is minimized by extracting a value proportional to a tracking error signal offset component from a tracking servo demand signal, applying a scaling factor to match the scaling applied to the tracking servo demand signal with scaling applied to the amplified tracking error signal, and subtracting the product of this function from the source signal i.e. the tracking error signal. The modified source signal, following this operation, has a reduced order of tracking error offset.