Abstract:
Determination of locations of multiple rectangular areas within a composite projection area formed on a projection surface by a projector array of multiple projectors. A location of a maximum rectangular area is determined within the composite projection area. Available regions comprise regions unoccupied by previously-located rectangular areas. The maximum rectangular area is removed from the available regions. The following are iteratively repeated: determining a location of a next maximum rectangular area and removing the next maximum rectangular area from the available regions, until a stopping condition is met. A list of determined locations for rectangular areas within the composite projection area is provided after the stopping condition has been met.
Abstract:
A centralization point in a projection area is designated. The projection area is on a projection surface onto which images are projected by a projector array, which includes a plurality of projectors. A first image is projected in a first maximum area rectangle at a first aspect ratio of the first image, and the first image is projected into the projection area centered at the centralization point. A second image is projected in a second maximum area rectangle at a second aspect ratio of the second image, and the second image is projected into the projection area centered at the centralization point.
Abstract:
A method for printing image including selecting data to be printed, wherein the data includes image data, setting printing preferences associated with a print job to print the data, submitting the print job, receiving the print job, detecting whether metadata associated with the data to be printed exists in the print job, determining whether any detected metadata is to be printed along with the data to be printed, creating a file to be printed, wherein the file includes the data to be printed and metadata determined to be printed, and printing the file.
Abstract:
The present invention provides for transforming a document containing data using a filter pipeline. The document is received, and at least one parameter for transforming the data within the document is obtained by a print driver interface. The data within the document is transformed based on the obtained at least one parameter, using the filter pipeline. The transformed document is output. As such, an enhancement/transformation feature can be applied to data within a document from virtually any editing software application, even if that application does not incorporate the feature into its software.
Abstract:
Control of a multiprojector system having multiple projectors arranged in a projector array. It is determined whether the projector array is positioned to form one object or two or more objects. A first keystone correction mode is selected if it is determined that the projector array is positioned to form one object. A second keystone correction mode is selected if it is determined that the projector array is positioned to form two or more objects. In the first keystone correction mode, a homography transformation for each of the projectors is derived so as to accommodate keystone correction of all projectors in the projector array involved in the projection of the single object. In the second keystone correction mode, a homography transformation for each of the projectors is derived so as to accommodate keystone correction of all projectors involved in the projection of each object.
Abstract:
Keystone correction for a projector. An uncorrected graphic is displayed on a display unit utilizing pixels. The uncorrected graphic is projected from the display unit onto a projection screen to form an uncorrected image. An orientation of the uncorrected image relative to the projection screen is captured. The uncorrected graphic is transformed into a pre-distorted graphic for projection from the display unit onto the projection screen so as to form a corrected image with an orientation more aligned with the projection screen than the orientation of the uncorrected image and such that the pre-distorted graphic utilizes more pixels in the display unit than a second pre-distorted graphic, wherein if formed, would be formed by transforming the uncorrected graphic such that the second pre-distorted graphic forms a second corrected image with a maximum rectangular area inside the uncorrected image when projected from the display unit onto the projection screen.
Abstract:
Keystone correction for a projector. An uncorrected graphic is displayed on a display unit utilizing pixels. The uncorrected graphic is projected from the display unit onto a projection screen to form an uncorrected image. An orientation of the uncorrected image relative to the projection screen is captured. The uncorrected graphic is transformed into a pre-distorted graphic for projection from the display unit onto the projection screen so as to form a corrected image with an orientation more aligned with the projection screen than the orientation of the uncorrected image and such that the pre-distorted graphic utilizes more pixels in the display unit than a second pre-distorted graphic, wherein if formed, would be formed by transforming the uncorrected graphic such that the second pre-distorted graphic forms a second corrected image with a maximum rectangular area inside the uncorrected image when projected from the display unit onto the projection screen.
Abstract:
Focus adjustment for a projector which includes a projection lens having an adjustable focus position. An asymmetrically focused pattern is projected through the projection lens onto a projection screen, wherein the asymmetrically focused pattern is imaged by the projection lens onto the projection screen with a focus at one portion on the screen that differs with focus at another portion thereof. An image of the asymmetrically focused pattern is captured from the projection screen. A focus adjustment direction is calculated by using asymmetrical aspects of the captured image of the asymmetrically focused pattern. The focus position of the projection lens is driven in the calculated focus adjustment direction so as to move from an out-of-focus state of the projection lens toward an in-focus state.
Abstract:
A method and apparatus for printing over a network where a user at a client device is able to print to a network printer via a server device. The server device includes a print driver that initializes an asynchronous communication channel, sends notification message data to a client device over a network via the asynchronous communication channel, receives data from the client device in response to delivery of the notification message data, and requests user input data from the client device for printing.
Abstract:
A method for establishing communication between a plurality of devices, including obtaining communication protocols that the plurality of devices support, determining which of the communication protocols are common to each the plurality of devices, determining operational parameters that are associated with each of the common communication protocols, indicating which of the common communication protocols and associated operational parameters can be used to establish communication between the plurality of devices, determining whether the plurality of devices can communicate with each other using the common communication protocols, and establishing communication between the plurality of devices using at least one of the common communication protocols.