Abstract:
The present invention related to a method in which a transmitting device transmits a packet in a wireless network, wherein said method comprises: a step of receiving, from an upper layer, video data divided into a plurality of slices and compressed into one or more types of layers; a step of constructing a MAC packet such that information on the types of said one or more layers of the video data is included in a MAC header of the MAC packet; and a step of delivering the MAC packet to a lower layer to transmit the MAC packet to a receiving device.
Abstract:
A broadcast receiver and a method of processing data are disclosed. The broadcast receiver includes a signal receiving unit, a transmission parameter detector, a block decoder, a storage unit, and a data manager. The signal receiving unit receives a broadcast signal multiplexed mobile broadcast service data including two-way contents and main broadcast service data. The transmission parameter detector detects the transmission parameter. The block decoder symbol-decodes the received broadcast signal included in the mobile broadcast service data in block units, based upon the detected transmission parameter. The storage unit stores the decoded two-way contents. The data manager reads a requested two-way contents from the stored two-way contents with respect to a user's select signal, and provides the requested two-way contents service.
Abstract:
A broadcast receiver and a method of processing data are disclosed. The broadcast receiver includes a signal receiving unit, a known sequence detector, and a channel equalizer. The signal receiving unit repeats, when an operating mode of the broadcast receiver has been switched to a Discontinuous Receive (DRx) mode, preset wake-up and sleep sections, and receives a broadcast signal containing main broadcast service and mobile broadcast service data in the wake-up section. The known sequence detector detects known data included in the received broadcast signal. The channel equalizer uses the detected known data, thereby channel-equalizing the received mobile broadcast service data.
Abstract:
A method of channel assessment and channel searching in a wireless network is disclosed. The wireless network separately performs a channel assessment procedure and a channel searching procedure for channel change or another object. The channel assessment procedure is to measure a status or quality of a channel which is currently used in the wireless network. A coordinator of the wireless network designates a time interval for the channel assessment to notify other device of it. The channel assessment procedure may be performed periodically, and is preferably scheduled to allow other devices not to use the channel for the time interval which at least one device performs channel assessment.
Abstract:
The present invention relates to a handover method that a current coordinator transfers a coordinating function of controlling a network to a different device configuring the network. The present invention relates to a method of selecting an optimal device as a coordinator in selecting the different device using priority information decided by a prescribed evaluation reference. And, the present invention relates to a method of simplifying a procedure in a manner of transmitting relevant information together with a handover request message. In a wireless network including a coordinator, a secondary coordinator is decided in advance. If the coordinator is suddenly unable to perform a function, the present invention relates to a method of enabling the function of the coordinator to be performed by the decided secondary coordinator. Thus, a process for transferring the coordinating function without the handover process is called a recovery process. The present invention relates to the recovery method and a method of deciding a secondary coordinator to perform a recovery. In the method of deciding the secondary coordinator, a method of deciding a more proper coordinator using information on coordinator priority is provided.
Abstract:
Methods of controlling connection establishment to transmit or receive AA/data in a wireless network are disclosed. A method of controlling connection establishment to transmit or receive AA/data in a first device of a wireless network, which includes a coordinator and at least one device, comprises transmitting connection request information required to request connection establishment with a second device and a connection request message which includes capability information of the first device to the second device, and receiving a connection response message from the second device in response to the connection request message. As well as message formats to said methods are disclosed.
Abstract:
The present invention relates to a handover method that a current coordinator transfers a coordinating function of controlling a network to a different device configuring the network. The present invention relates to a method of selecting an optimal device as a coordinator in selecting the different device using priority information decided by a prescribed evaluation reference. And, the present invention relates to a method of simplifying a procedure in a manner of transmitting relevant information together with a handover request message. In a wireless network including a coordinator, a secondary coordinator is decided in advance. If the coordinator is suddenly unable to perform a function, the present invention relates to a method of enabling the function of the coordinator to be performed by the decided secondary coordinator. Thus, a process for transferring the coordinating function without the handover process is called a recovery process. The present invention relates to the recovery method and a method of deciding a secondary coordinator to perform a recovery. In the method of deciding the secondary coordinator, a method of deciding a more proper coordinator using information on coordinator priority is provided.
Abstract:
A broadcast receiver and a method of processing data are disclosed. The broadcast receiver includes a signal receiving unit, a position information module, and a navigation unit. The signal receiving unit receives broadcast signal multiplexed mobile broadcast service data including traffic information and main broadcast service data. The position information module searches and generates a current position information of the broadcast receiver. The navigation unit assigns a weight to each link of a route to a destination based on the current position information received and the traffic information included in the mobile broadcast service data and searches for a bypass route based on the weighted link, and then performs route guidance using at least one of current route and the bypass route.
Abstract:
A broadcast receiver and a method of processing data are disclosed. The broadcast receiver includes a signal receiving unit, a known sequence detector, and a channel equalizer. The signal receiving unit repeats, when an operating mode of the broadcast receiver has been switched to a Discontinuous Receive (DRx) mode, preset wake-up and sleep sections, and receives a broadcast signal containing main broadcast service and mobile broadcast service data in the wake-up section. The known sequence detector detects known data included in the received broadcast signal. The channel equalizer uses the detected known data, thereby channel-equalizing the received mobile broadcast service data.
Abstract:
The present invention relates to a method for transmitting/receiving voice packet data having different encoding techniques through one server in a multimedia internet protocol system. According to the present invention, the voice packets having a predetermined size and a predetermined period which are received from a transmitting IP phone in accordance with each encoding technique are sequentially stored, without performing decoding and encoding operations, and the stored voice packets are sequentially transmitted to a receiving IP phone when a transmission demand is transmitted from the receiving IP phone by a predetermined period.